Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Mar 12 2018 16:10:50
%S 1,9,79,679,5679,45679,345679,2345679,12345679,12345679,-987654321,
%T -20987654321,-320987654321,-4320987654321,-54320987654321,
%U -654320987654321,-7654320987654321,-87654320987654321,-987654320987654321,-10987654320987654321,-120987654320987654321
%N a(n) = ((-9*n + 82)*10^n - 1)/81.
%H Colin Barker, <a href="/A294344/b294344.txt">Table of n, a(n) for n = 0..900</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-120,100).
%F From _Colin Barker_, Oct 29 2017: (Start)
%F G.f.: (1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2).
%F a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
%F (End)
%e Curious multiplications:
%e 9 * 8 = 72;
%e 79 * 8 = 632;
%e 679 * 8 = 5432;
%e 5679 * 8 = 45432;
%e 45679 * 8 = 365432;
%e 345679 * 8 = 2765432;
%e 2345679 * 8 = 18765432.
%e 9 * 9 = 81;
%e 79 * 9 = 711;
%e 679 * 9 = 6111;
%e 5679 * 9 = 51111;
%e 45679 * 9 = 411111;
%e 345679 * 9 = 3111111;
%e 2345679 * 9 = 21111111.
%t LinearRecurrence[{21,-120,100},{1,9,79},30] (* _Harvey P. Dale_, Mar 12 2018 *)
%o (PARI) Vec((1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2) + O(x^30)) \\ _Colin Barker_, Oct 29 2017
%Y Cf. A294328.
%K sign,easy
%O 0,2
%A _Seiichi Manyama_, Oct 28 2017