login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062569 a(n) = sigma(n!). 24
1, 1, 3, 12, 60, 360, 2418, 19344, 159120, 1481040, 15334088, 184009056, 2217441408, 31044179712, 442487616480, 6686252969760, 107004539285280, 1926081707135040, 34683832925921088, 693676658518421760, 13891399238731734720, 292460416142501376000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Lim_{n->infinity: a(n)/n! = infinity}. Proof in Sierpiński. - Bernard Schott, Feb 09 2019

REFERENCES

Wacław Sierpiński, Elementary Theory of Numbers, Ex. 6, p. 169, Warsaw, 1964.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

Rafael Jakimczuk, Two topics in number theory: sum of divisors of the factorial and a formula for primes, International Mathematical Forum, Vol. 12, No. 19 (2017), pp. 929-935. See Theorem 1.4, p. 932.

Vaclav Kotesovec, Plot of a(n)/(n!*log(n)) for n = 2..50000.

FORMULA

a(n) = A000203(A000142(n)). - Michel Marcus, Jan 10 2015

a(p) = (p+1)*a(p-1) for p prime. - Altug Alkan, Jul 18 2016

a(n) ~ c * n! * log(n) * (1 + O(1/log(n))), where c =  exp(gamma) = A073004 (Jakimczuk, 2017). - Amiram Eldar, Nov 07 2020

MAPLE

with(numtheory):seq(sigma(n!), n=0..19); # Zerinvary Lajos, Feb 15 2008

MATHEMATICA

Array[DivisorSigma[1, #! ]&, 33, 1] (* Vladimir Joseph Stephan Orlovsky, Nov 01 2009 *)

PROG

(PARI) for(n=0, 21, print(sigma(n!)))

(Sage) [sigma(ZZ(n).factorial(), 1) for n in range(20)]  # Zerinvary Lajos, Jun 13 2009

CROSSREFS

Cf. A000142, A000203, A027423, A073004.

Sequence in context: A326242 A070863 A180707 * A089057 A077134 A001710

Adjacent sequences:  A062566 A062567 A062568 * A062570 A062571 A062572

KEYWORD

easy,nonn

AUTHOR

Jason Earls, Jul 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 04:02 EST 2021. Contains 349426 sequences. (Running on oeis4.)