login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062567 First multiple of n whose reverse is also divisible by n, or 0 if no such multiple exists. 3
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 48, 494, 252, 510, 272, 272, 216, 171, 0, 168, 22, 161, 696, 525, 494, 999, 252, 232, 0, 434, 2112, 33, 272, 525, 216, 111, 494, 585, 0, 656, 252, 989, 44, 540, 414, 141, 2112, 343, 0, 969, 676, 212, 4698, 55, 616, 171, 232, 767 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(81) = 999999999. 10^27-1 is a solution for a(3^5), but it may not be the smallest one. However, it seems likely (and perhaps easy to prove) that a(3^i) is 3^(i-2) "9"s, for i > 1. - Jud McCranie, Aug 07 2001

a(3^5)=4899999987<10^27-1 so Jud McCranie's conjecture "for n>1, a(3^n)=10^3^(n-2)-1 " is incorrect. I found a(3^n) for n<21; A112726 gives this subsequence. From the terms of A112726 we see that for n>4, a(3^n) is much smaller than 10^3^(n-2)-1. It seems that only for n=2,3 & 4 we have a(3^n)=10^3^(n-2)-1. - Farideh Firoozbakht, Nov 13 2005

LINKS

Table of n, a(n) for n=0..58.

EXAMPLE

48 and 84 are both divisible by 12.

MATHEMATICA

Block[{k = 1}, While[ !IntegerQ[k/n] || !IntegerQ[ FromDigits[ Reverse[ IntegerDigits[k]]]/n] && k < 10^5, k++ ]; If[k != 10^5, k, 0]]; Table[ a[n], {n, 1, 60}] (* Robert G. Wilson v *)

a[n_]:=(For[m=1, !IntegerQ[FromDigits[Reverse[IntegerDigits[m*n]]]/n], m++ ]; m*n); Do[Print[a[n]], {n, 60}] (* Farideh Firoozbakht *)

CROSSREFS

Cf. A112725, A112726.

Sequence in context: A321243 A067079 A080434 * A069554 A020485 A083116

Adjacent sequences:  A062564 A062565 A062566 * A062568 A062569 A062570

KEYWORD

base,nonn

AUTHOR

Erich Friedman, Jul 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)