login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062570 a(n) = phi(2*n). 16
1, 2, 2, 4, 4, 4, 6, 8, 6, 8, 10, 8, 12, 12, 8, 16, 16, 12, 18, 16, 12, 20, 22, 16, 20, 24, 18, 24, 28, 16, 30, 32, 20, 32, 24, 24, 36, 36, 24, 32, 40, 24, 42, 40, 24, 44, 46, 32, 42, 40, 32, 48, 52, 36, 40, 48, 36, 56, 58, 32, 60, 60, 36, 64, 48, 40, 66, 64, 44, 48, 70, 48, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is also the number of non-congruent solutions to x^2 - y^2 = 1 mod n. - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003

a(n)= A173557(n)*b(n) where b(n) = 1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, ... is the multiplicative function defined by b(p^e) = p^(e-1) if p<>2 and b(2^e)=2^e. b(n) = n/A204455(n). - R. J. Mathar, Jul 02 2013

a(n) is the size of a square companion matrix of the minimal cyclotomic polynomial of (-1)^(1/n). - Eric Desbiaux, Dec 08 2015

REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 28.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

L. Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.

L. Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014) # 14.11.6.

Wikipedia, Ramanujan's sum

FORMULA

a(n) = Sum_{d|n and d is odd} n/d*mu(d).

Multiplicative with a(2^e) = 2^e and a(p^e) = p^e-p^(e-1), p>2.

Dirichlet g.f.: zeta(s-1)/zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007

a(n) = A000010(2*n).

a(n) = phi(n)*(1+((n+1) mod 2)). - Gary Detlefs, Jul 13 2011

a(n) = - c_{2n}(n) where c_q(n) is Ramanujan's sum. - Michael Somos, Aug 23 2013

a(n) = A055034(2*n), for n >= 2. - Wolfdieter Lang, Nov 30 2013

O.g.f.: Sum_{n >= 1} mu(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1))^2. - Peter Bala, Mar 17 2019

a(n) = A000010(4*n)/2, for n > = 1 (see Apostol, Theorem 2.5, (b), p. 28). - Wolfdieter Lang, Nov 17 2019

a(n) = n - Sum_{d|n, n/d odd, d < n} a(d). - Ilya Gutkovskiy, May 30 2020

MAPLE

[phi(2*n)$n=1..80]; # Muniru A Asiru, Mar 18 2019

MATHEMATICA

Table[EulerPhi[2 n], {n, 80}] (* Vincenzo Librandi, Aug 23 2013 *)

PROG

(PARI) a(n) = eulerphi(2*n)

(Sage) [euler_phi(2*n) for n in range(1, 74)] # Zerinvary Lajos, Jun 06 2009

CROSSREFS

Cf. A000010, A000034, A008683, A037225, A060968, A062803.

Sequence in context: A035114 A202103 A333787 * A108514 A317419 A120456

Adjacent sequences:  A062567 A062568 A062569 * A062571 A062572 A062573

KEYWORD

mult,nonn,easy

AUTHOR

Jason Earls, Jul 03 2001

EXTENSIONS

Corrected by Vladeta Jovovic, Dec 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)