OFFSET
1,3
COMMENTS
There are no odd primes dividing n iff n is a power of 2.
This sequence coincides with the bisection of A007947 (even indices), which is A099985, dividing out the even prime 2 in the squarefree kernel.
a(n) divides A106609(n) for n>=1. - Alexander R. Povolotsky, Apr 06 2015
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e)=p for p <> 2 and a(2^e)=1. - R. J. Mathar, Jul 02 2013
a(n) = Sum_{d|n} phi(d)*mu(2d)^2. - Ridouane Oudra, Sep 02 2019
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} mu(2*n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(2*gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (2/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (2/5) * A065463 = 0.281776... . - Amiram Eldar, Nov 19 2022
a(n) = Sum_{d divides n, d odd} mu(d)^2 * phi(d). - Peter Bala, Feb 01 2024
EXAMPLE
a(5)=5 because 5 is a single odd prime.
a(9)=3 because 9=3*3 has as squarefree part 3.
a(1)=1 because 1 is a power of 2, having no odd primes as a factor.
MAPLE
A204455 := proc(n)
local p;
numtheory[factorset](n) minus {2} ;
mul(p, p=%) ;
end proc:
seq(A204455(n), n=1..40) ; # R. J. Mathar, Jan 25 2017
MATHEMATICA
f[n_] := Select[First /@ FactorInteger@ n, PrimeQ@ # && OddQ@ # &]; Times @@@ (f /@ Range@ 120) (* Michael De Vlieger, Apr 08 2015 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(k=1, #f~, if (f[k, 1] % 2, f[k, 1], 1)); } \\ Michel Marcus, Apr 07 2015
(PARI) a(n) = factorback(setminus(factorint(n)[, 1]~, [2])) \\ Jianing Song, Aug 09 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Wolfdieter Lang, Jan 19 2012
STATUS
approved