The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204456 Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime. 3
 1, 1, 1, 4, 1, 1, 2, 4, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The row length sequence of this array is p(m) = A000040(m) (the primes). Row m, for m >= 1, lists the coefficients of the numerator polynomials N(p(m);x) = Sum_{k=0..p(m)-1} a(m,k)*x^k for the o.g.f. G(p(m);x) = x*N(p(m);x)/((1-x^(p(m)-1))*(1-x)) for the sequence a(p(m);n) of odd numbers not divisible by p(n). For m=1 one has a(2;n)=2*n-1, n >= 1, and for m > 1 one has a(p(m);n) = 2*n+1 + floor((n-(p(m)+1)/2)/(p(m)-1)), n >= 1, and a(p(m);0):=0. See A204454 for the m=5 sequence a(11;n), also for more details. The rows of this array are symmetric. For m > 1 they are symmetric around the central 4. The first (p(m)+1)/2 numbers of row number m, for m >= 2, are given by the first differences of the corresponding sequence {a(p(m);n)}, with a(p(m),0):=0. See a formula below. The proof is trivial for m=1, and clear for m >= 2 from a(p(m);n), for n=0,...,(p(m)+1)/2, which is {0,1,3,...,p-2,p+2}. - Wolfdieter Lang, Jan 26 2012 LINKS FORMULA a(m,k) = [x^k]N(p(m);x), m>=1, k=0,...,p(m)-1, with the numerator polynomial N(p(m);x) for the o.g.f. G(p(m);x) of the sequence of odd numbers not divisible by the m-th prime p(m)=A000040(m). See the comment above. Row m has the number pattern (exponents on a number indicate how many times this number appears consecutively):   m=1, p(1)=2: 1 1, and for m>=2:   m, p(m): 1 2^((p(m)-3)/2) 4 2^((p(m)-3)/2) 1. a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2, with the corresponding sequence {a(p(m);n)} of the odd numbers not divisible by p(m), with a(p(m);0):=0. For m=1: a(1,0) = a(2;1)-a(2;0). By symmetry around the center: a(m,(p(m)-1)/2+k) = a(m,(p(m)-1)/2-k), k=1,...,(p(m)-1)/2, m>=2. For m=1: a(1,1)=a(1,0). See a comment above. - Wolfdieter Lang, Jan 26 2012 EXAMPLE The array starts m,p\k  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ... 1,2:   1  1 2,3:   1  4  1 3,5:   1  2  4  2  1 4,7:   1  2  2  4  2  2  1 5,11:  1  2  2  2  2  4  2  2  2  2  1 6,13:  1  2  2  2  2  2  4  2  2  2  2  2  1 7,17:  1  2  2  2  2  2  2  2  4  2  2  2  2  2  2  2  1 ... N(p(4);x) = N(7;x) = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 2*x^5 + x^6 = (1+x^2)*(1+2*x+x^2+2*x^3+x^4). G(p(4);x) = G(7;x) = x*N(7;x)/((1-x^6)*(1-x)), the o.g.f. of A162699. Compare this with the o.g.f. given there by R. J. Mathar, where the numerator is factorized also. First difference rule: m=4: {a(7;n)} starts {0,1,3,5,9,...}, the first differences are {1,2,2,4,...}, giving the first (7+1)/2=4 entries of row number m=4 of the array. The other entries follow by symmetry. - Wolfdieter Lang, Jan 26 2012 CROSSREFS Cf. A000040, A005408 (p=2), A007310 (p=3), A045572 (p=5), A162699 (p=7), A204454 (p=11). Sequence in context: A264534 A228489 A096103 * A143441 A279206 A333989 Adjacent sequences:  A204453 A204454 A204455 * A204457 A204458 A204459 KEYWORD nonn,easy,tabf AUTHOR Wolfdieter Lang, Jan 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 12:47 EDT 2020. Contains 337344 sequences. (Running on oeis4.)