login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204456
Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime.
3
1, 1, 1, 4, 1, 1, 2, 4, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
OFFSET
1,4
COMMENTS
The row length sequence of this array is p(m) = A000040(m) (the primes).
Row m, for m >= 1, lists the coefficients of the numerator polynomials N(p(m);x) = Sum_{k=0..p(m)-1} a(m,k)*x^k for the o.g.f. G(p(m);x) = x*N(p(m);x)/((1-x^(p(m)-1))*(1-x)) for the sequence a(p(m);n) of odd numbers not divisible by p(n). For m=1 one has a(2;n)=2*n-1, n >= 1, and for m > 1 one has a(p(m);n) = 2*n+1 + floor((n-(p(m)+1)/2)/(p(m)-1)), n >= 1, and a(p(m);0):=0. See A204454 for the m=5 sequence a(11;n), also for more details.
The rows of this array are symmetric. For m > 1 they are symmetric around the central 4.
The first (p(m)+1)/2 numbers of row number m, for m >= 2, are given by the first differences of the corresponding sequence {a(p(m);n)}, with a(p(m),0):=0. See a formula below. The proof is trivial for m=1, and clear for m >= 2 from a(p(m);n), for n=0,...,(p(m)+1)/2, which is {0,1,3,...,p-2,p+2}. - Wolfdieter Lang, Jan 26 2012
FORMULA
a(m,k) = [x^k]N(p(m);x), m>=1, k=0,...,p(m)-1, with the numerator polynomial N(p(m);x) for the o.g.f. G(p(m);x) of the sequence of odd numbers not divisible by the m-th prime p(m)=A000040(m). See the comment above.
Row m has the number pattern (exponents on a number indicate how many times this number appears consecutively):
m=1, p(1)=2: 1 1, and for m>=2:
m, p(m): 1 2^((p(m)-3)/2) 4 2^((p(m)-3)/2) 1.
a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2,
with the corresponding sequence {a(p(m);n)} of the odd numbers not divisible by p(m), with a(p(m);0):=0. For m=1: a(1,0) = a(2;1)-a(2;0). By symmetry around the center: a(m,(p(m)-1)/2+k) = a(m,(p(m)-1)/2-k), k=1,...,(p(m)-1)/2, m>=2. For m=1: a(1,1)=a(1,0). See a comment above. - Wolfdieter Lang, Jan 26 2012
EXAMPLE
The array starts
m,p\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
1,2: 1 1
2,3: 1 4 1
3,5: 1 2 4 2 1
4,7: 1 2 2 4 2 2 1
5,11: 1 2 2 2 2 4 2 2 2 2 1
6,13: 1 2 2 2 2 2 4 2 2 2 2 2 1
7,17: 1 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 1
...
N(p(4);x) = N(7;x) = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 2*x^5 + x^6 = (1+x^2)*(1+2*x+x^2+2*x^3+x^4).
G(p(4);x) = G(7;x) = x*N(7;x)/((1-x^6)*(1-x)), the o.g.f. of
A162699. Compare this with the o.g.f. given there by R. J. Mathar, where the numerator is factorized also.
First difference rule: m=4: {a(7;n)} starts {0,1,3,5,9,...},
the first differences are {1,2,2,4,...}, giving the first (7+1)/2=4 entries of row number m=4 of the array. The other entries follow by symmetry. - Wolfdieter Lang, Jan 26 2012
CROSSREFS
Cf. A000040, A005408 (p=2), A007310 (p=3), A045572 (p=5), A162699 (p=7), A204454 (p=11).
Sequence in context: A264534 A228489 A096103 * A143441 A279206 A333989
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 24 2012
STATUS
approved