login
A318653
Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.
4
1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 3, 17, 3, 19, 5, 21, 11, 23, 3, -5, 13, 15, 7, 29, 15, 31, 3, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 9, -21, -5, 51, 13, 53, 15, 55, 7, 57, 29, 59, 15, 61, 31, 21, 5, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, -15, 19, 77, 39, 79, 15, 3, 41, 83, 21, 85, 43, 87, 11, 89, 15
OFFSET
1,3
COMMENTS
No zeros among the first 2^20 terms.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
(PARI)
up_to = 65537;
A007947(n) = factorback(factorint(n)[, 1]);
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318653_aux = DirSqrt(vector(up_to, n, A007947(n)));
A318653(n) = numerator(v318653_aux[n]);
CROSSREFS
Cf. A007947, A299150 (denominators).
Sequence in context: A299766 A161398 A204455 * A161820 A341042 A116528
KEYWORD
sign,frac,mult
AUTHOR
Antti Karttunen, Aug 31 2018
STATUS
approved