OFFSET
0,4
COMMENTS
Equals row 2 of the array in A178239, an infinite set of sequences of the form a(n) = a(2n), a(2n+1) = r*a(n) + a(n+1). - Gary W. Adamson, May 23 2010
Given an infinite lower triangular matrix M with (1, 1, 2, 0, 0, 0, ...) in every column, shifted down twice for columns k>1; lim_{n->infinity} M^n = A116528, the left-shifted vector considered as a sequence with offset 1. - Gary W. Adamson, May 05 2010
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
FORMULA
G.f.: x * Product_{k>=0} (1 + x^(2^k) + 2*x^(2^(k+1))). - Ilya Gutkovskiy, Jul 07 2019
MAPLE
A116528 := proc(n)
option remember;
if n <= 1 then
n;
elif type(n, 'even') then
procname(n/2) ;
else
2* procname((n-1)/2)+procname((n+1)/2) ;
end if;
end proc:
seq(A116528(n), n=0..70) ; # R. J. Mathar, Nov 16 2011
MATHEMATICA
b[0]:= 0; b[1]:= 1; b[n_?EvenQ]:= b[n] = b[n/2]; b[n_?OddQ]:= b[n] = 2*b[(n-1)/2] + b[(n+1)/2]; a = Table[b[n], {n, 1, 70}]
PROG
(PARI) a(n) = if(n<2, n, if(n%2==0, a(n/2), 2*a((n-1)/2) + a((n+1)/2))); \\ G. C. Greubel, Jul 07 2019
(Magma)
a:=func< n | n lt 2 select n else ((n mod 2) eq 0) select Self(Round((n+1)/2)) else (2*Self(Round(n/2)) + Self(Round((n+2)/2))) >;
[a(n): n in [0..70]]; // G. C. Greubel, Jul 07 2019
(Sage)
def a(n):
if (n<2): return n
elif (mod(n, 2)==0): return a(n/2)
else: return 2*a((n-1)/2) + a((n+1)/2)
[a(n) for n in (0..70)] # G. C. Greubel, Jul 07 2019
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Roger L. Bagula, Mar 15 2006
EXTENSIONS
Edited by G. C. Greubel, Oct 30 2016
STATUS
approved