login
A116529
a(2*n + 1) = a(n), a(2*n + 2) = 2*a(n) + a(n-1).
6
1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 7, 5, 12, 1, 7, 4, 9, 3, 10, 7, 17, 2, 11, 7, 16, 5, 17, 12, 29, 1, 14, 7, 15, 4, 15, 9, 22, 3, 15, 10, 23, 7, 24, 17, 41, 2, 21, 11, 24, 7, 25, 16, 39, 5, 26, 17, 39, 12, 41, 29, 70, 1, 31, 14, 29, 7, 28, 15
OFFSET
0,3
LINKS
Kevin Ryde, PARI/GP Code
FORMULA
From G. C. Greubel, Oct 30 2016: (Start)
a(2*n + 1) = a(n), n>=1.
a(2*n + 2) = 2*a(n) + a(n-1), n>=1. (End)
G.f. g(x) satisfies g(x) = 1 + (x^4+2*x^2+x)*g(x^2). - Robert Israel, Nov 13 2017
MAPLE
gg:= 1:
for iter from 1 to 7 do
gg:= convert(series(1+(x^4+2*x^2+x)*eval(gg, x=x^2), x, 2^iter+1), polynom)
od:
seq(coeff(gg, x, n), n=0..2^7); # Robert Israel, Nov 13 2017
MATHEMATICA
b[0] := 0; b[1] := 1;
b[n_?EvenQ] := b[n] = b[n/2];
b[n_?OddQ] := b[n] = 2*b[(n - 1)/2] + b[(n - 3)/2];
Table[b[n], {n, 1, 70}]
PROG
(PARI) See links.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 15 2006
EXTENSIONS
New name using formula, Joerg Arndt, Dec 17 2022
STATUS
approved