OFFSET
1,3
COMMENTS
a(n) := denominator of cfenc(n). cfenc(n) := number given by interpreting as a continued fraction expansion (indexed from 1) the sequence whose i-th entry is one plus the exponent on the i-th prime factor of n (fix cfenc(1)=1).
LINKS
Hans Havermann, Table of n, a(n) for n = 1..10000
FORMULA
a(2^k) = 1.
a(prime(n)) = Fibonacci(n+1).
EXAMPLE
a(2646) = denominator(cfenc(2646)) = denominator(cfenc(2^1 * 3^3 * 7^2)) = denominator(FromContinuedFraction[{2; 4, 1, 3}]) = denominator(2 + 1/(4 + 1/(1 + 1/3))) = denominator(42/19) = 19.
MATHEMATICA
Table[If[n == 1, 1, (fl = FactorInteger[n]; pq = Table[1, {i, 1, PrimePi[Last[fl][[1]]]}]; While[Length[fl] > 0, pp = First[fl]; fl = Drop[fl, 1]; pq[[PrimePi[pp[[1]]]]] = pp[[2]] + 1; ]; Denominator[FromContinuedFraction[pq]])], {n, 1, 80}]
CROSSREFS
KEYWORD
frac,nonn,uned
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 12 2006
STATUS
approved