

A300383


In the ranked poset of integer partitions ordered by refinement, a(n) is the size of the lower ideal generated by the partition with Heinz number n.


26



1, 1, 2, 1, 3, 2, 5, 1, 3, 3, 7, 2, 11, 5, 5, 1, 15, 3, 22, 3, 8, 7, 30, 2, 6, 11, 4, 5, 42, 5, 56, 1, 11, 15, 11, 3, 77, 22, 17, 3, 101, 8, 135, 7, 7, 30, 176, 2, 14, 6, 23, 11, 231, 4, 15, 5, 33, 42, 297, 5, 385, 56, 11, 1, 23, 11, 490, 15, 45, 11, 627, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The size of the corresponding upper ideal is A317141(n). Chains are A213427(n) and maximal chains are A002846(n).


LINKS



FORMULA

a(x * y) <= a(x) * a(y).


EXAMPLE

The a(30) = 5 partitions are (321), (2211), (3111), (21111), (111111), with corresponding Heinz numbers: 30, 36, 40, 48, 64.


MATHEMATICA

primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[n]]]], {n, 50}]


CROSSREFS

Cf. A000041, A001055, A001222, A002846, A056239, A112798, A213427, A215366, A265947, A296150, A299200, A299202, A299925, A300273.


KEYWORD

nonn


AUTHOR



STATUS

approved



