login
A299925
Number of chains in Young's lattice from () to the partition with Heinz number n.
16
1, 1, 2, 2, 4, 6, 8, 4, 12, 16, 16, 16, 32, 40, 44, 8, 64, 44, 128, 52, 136, 96, 256, 40, 88, 224, 88, 152, 512, 204, 1024, 16, 384, 512, 360, 136, 2048, 1152, 1024, 152, 4096, 744, 8192, 416, 496, 2560, 16384, 96, 720, 496, 2624, 1088, 32768, 360, 1216, 504
OFFSET
1,3
COMMENTS
a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The a(9) = 12 tableaux:
1 3 1 2
2 4 3 4
.
1 3 1 2 1 2 1 2 1 1
2 3 3 3 2 3 1 3 2 3
.
1 2 1 2 1 1 1 1
2 2 1 2 2 2 1 2
.
1 1
1 1
The a(9) = 12 chains of Heinz numbers:
1<9,
1<2<9, 1<3<9, 1<4<9, 1<6<9,
1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9,
1<2<3<6<9, 1<2<4<6<9.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
hncQ[a_, b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]], Reverse[primeMS[a]]}]];
chns[x_, y_]:=chns[x, y]=Join[{{x, y}}, Join@@Function[c, Append[#, y]&/@chns[x, c]]/@Select[Range[x+1, y-1], hncQ[x, #]&&hncQ[#, y]&]];
Table[Length[chns[1, n]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 21 2018
STATUS
approved