|
|
A299926
|
|
a(n) is the number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions skew partitions.
|
|
16
|
|
|
1, 4, 14, 60, 252, 1212, 5880, 30904, 166976, 952456, 5587840, 34217216, 215204960, 1401551376, 9360467760, 64384034784, 453328282624, 3274696185568, 24173219998912, 182546586425408
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If y is an integer partition of n, a generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.
|
|
LINKS
|
Table of n, a(n) for n=1..20.
|
|
EXAMPLE
|
The a(3) = 14 tableaux:
1 2 3 1 2 2 1 1 2 1 1 1
.
1 3 1 2 1 2 1 2 1 1 1 1
2 3 2 1 2 1
.
1 1 1 1
2 2 1 1
3 2 2 1
|
|
MATHEMATICA
|
undptns[y_]:=DeleteCases[Select[Tuples[Range[0, #]&/@y], OrderedQ[#, GreaterEqual]&], 0, {2}];
chn[y_]:=Join[{{{}, y}}, Join@@Function[c, Append[#, y]&/@chn[c]]/@Take[undptns[y], {2, -2}]];
Table[Sum[Length[chn[y]], {y, IntegerPartitions[n]}], {n, 8}]
|
|
CROSSREFS
|
Cf. A000085, A063834, A138178, A153452, A296188, A296561, A297388, A299699, A299925.
Sequence in context: A241706 A111276 A149493 * A307399 A307411 A349018
Adjacent sequences: A299923 A299924 A299925 * A299927 A299928 A299929
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Gus Wiseman, Feb 21 2018
|
|
STATUS
|
approved
|
|
|
|