login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A111276
Number of chiral non-crossing partition patterns of n points on a circle, divided by 2.
1
0, 0, 0, 0, 0, 4, 14, 60, 210, 728, 2442, 8252, 27716, 93924, 319964, 1098900, 3800928, 13244836, 46460738, 164015272, 582353976, 2078812492, 7457141650, 26871707908, 97236327900, 353213328024, 1287648322950, 4709765510884, 17279999438748, 63583033400968
OFFSET
1,6
COMMENTS
Half of the number of those rotation-inequivalent patterns of non-crossing partitions of n (equally spaced) points on a circle which are not invariant under reflections. Division by two counts one pattern from each chiral (Right-handed,Left-handed) pair.
LINKS
D. Callan and L. Smiley, Non-crossing Partitions under Rotation and Reflection, arXiv:math/0510447 [math.CO], 2005.
L. Smiley, a(5) = 0
L. Smiley, a(6)=8/2=4
FORMULA
a(n) = (A054357(n) - A001405(n))/2.
MATHEMATICA
a[n_] := If[n < 6, 0, ((Binomial[2n, n]/(n+1) + DivisorSum[n, Binomial[2#, #] EulerPhi[n/#] Boole[# < n]&])/n - Binomial[n, Floor[n/2]])/2];
Array[a, 22] (* Jean-François Alcover, Feb 17 2019 *)
PROG
(PARI) a(n) = (sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1) - binomial(n, n\2))/2 \\ Andrew Howroyd, Nov 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
David Callan and Len Smiley, Oct 21 2005
EXTENSIONS
a(23) onwards from Andrew Howroyd, Nov 19 2024
STATUS
approved