login
A120252
Number of primitive triangles with integer sides a<=b<=c and inradius n; primitive means gcd(a, b, c, n) = 1.
5
1, 4, 12, 13, 14, 28, 23, 27, 38, 33, 25, 81, 30, 52, 83, 44, 32, 101, 33, 80, 149, 73, 41, 146, 50, 61, 89, 132, 35, 204, 45, 80, 173, 79, 135, 220, 37, 85, 167, 156, 43, 291, 59, 164, 234, 88, 63, 236, 92, 126, 185, 162, 46, 179, 189, 258, 230, 94, 53, 483, 43, 94
OFFSET
1,2
COMMENTS
A120062(n) = sum_{k:k|n} a(k)
REFERENCES
Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
LINKS
Eric Weisstein's World of Mathematics, Heronian Triangle
FORMULA
Moebius transform of A120062. - David W. Wilson, Jun 14 2006
EXAMPLE
a(3)= 12 because there are 12 primitive triangles with integer sides and inradius r=3. They are (10,10,12), (8,15,17), (11,13,20), (7,24,25), (8,26,30), (19,20,37), (16,25,39), (15,28,41), (13,40,51), (12,55,65), (7,65,68), (11,100,109).
CROSSREFS
Cf. A120062.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Sequence in context: A009115 A051434 A074138 * A103053 A087760 A237279
KEYWORD
nonn
AUTHOR
Graeme McRae, Jun 12 2006
STATUS
approved