OFFSET
0,5
COMMENTS
Row k is the Hankel transform of C(n+k, k).
The matrix inverse starts
1;
1, -1;
-2, 3, -1;
-15, 24, -10, 1;
434, -700, 300, -35, 1;
47670, -76950, 33075, -3920, 126, -1;
-19787592, 31943835, -13733720, 1629936, -52920, 462, -1; - R. J. Mathar, Mar 22 2013
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = (cos(pi*k/2) - sin(pi*k/2))*( Product{j=0..k-1} C(n+j+1, k+1)/Product{j=0..k-1} C(k+j+1, k+1) ).
EXAMPLE
Triangle begins
1;
1, -1;
1, -3, -1;
1, -6, -10, 1;
1, -10, -50, 35, 1;
1, -15, -175, 490, 126, -1;
1, -21, -490, 4116, 5292, -462, -1;
1, -28, -1176, 24696, 116424, -60984, -1716, 1;
MAPLE
A120247 := proc(n, k)
(cos(Pi*k/2)-sin(Pi*k/2))*mul(binomial(n+j+1, k+1), j=0..k-1)/mul(binomial(k+j+1, k+1), j=0..k-1) ;
simplify(%) ;
end proc: # R. J. Mathar, Mar 22 2013
MATHEMATICA
p[m_, k_]:= Product[Binomial[m+j, k+1], {j, k}];
T[n_, k_]:= (-1)^Floor[(k+1)/2]*p[n, k]/p[k, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2023 *)
PROG
(Magma)
p:= func< m, k | k eq 0 select 1 else (&*[Binomial(m+j, k+1): j in [1..k]]) >;
A120247:= func< n, k | (-1)^Floor((k+1)/2)*p(n, k)/p(k, k) >;
[A120247(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2023
(SageMath)
def p(m, k): return product(binomial(m+j+1, k+1) for j in range(k))
def A120247(n, k): return (-1)^((k+1)//2)*p(n, k)/p(k, k)
flatten([[A120247(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 15 2023
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jun 12 2006
STATUS
approved