|
|
A107915
|
|
a(n) = binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4)/75.
|
|
7
|
|
|
1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, 26794167400, 44253495000, 71627692500, 113794603650, 177694650315
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Kekulé numbers for certain benzenoids.
|
|
REFERENCES
|
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = C(n,n-2)*C(n+1,n-3)*C(n+2,n-4)/(5*3!), n>=4. - Zerinvary Lajos, May 29 2007
a(n-3) = (1/144) * Sum_{1 <= x_1, x_2, x_3 <= n} x_1*x_2*x_3*(det V(x_1,x_2,x_3))^2 = 1/144*sum {1 <= i,j,k <= n} i*j*k*((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007
G.f.: -(x^6+22*x^5+113*x^4+190*x^3+113*x^2+22*x+1)/(x-1)^13. - Colin Barker, Jun 06 2012
Sum_{n>=0} 1/a(n) = 25200*Pi^2 - 248713.
Sum_{n>=0} (-1)^n/a(n) = 376003 - 430080*log(2) - 64800*zeta(3). (End)
|
|
MAPLE
|
a:=n->(1/75)*binomial(n+4, 4)*binomial(n+5, 4)*binomial(n+6, 4): seq(a(n), n=0..27);
seq(binomial(n, n-2)*binomial(n+1, n-3)*binomial(n+2, n-4)/(5*3!), n=4..22); # Zerinvary Lajos, May 29 2007
|
|
MATHEMATICA
|
a[n_] := Binomial[n + 4, 4] * Binomial[n + 5, 4] * Binomial[n + 6, 4]/75; Array[a, 25, 0] (* Amiram Eldar, May 29 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|