|
|
A298946
|
|
a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number.
|
|
4
|
|
|
35, 462, 2339, 4627, 2378, 4238, 5148, 1260, 57635, 85026, 64410, 100509, 163716, 171918, 93876, 309780, 148969, 444220, 370712, 532771, 652200, 938386, 816466, 907874, 569300, 1107298, 2470810, 2953692, 887812, 1341810, 2956584, 1941390, 589961, 6248628
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Composites c where a(n) = 1 could be called "Wolstenholme pseudoprimes". Do any such composites exist?
A necessary condition for c to be a "Wolstenholme pseudoprime" would be that it is a term of A228562 or A267824.
|
|
LINKS
|
|
|
MAPLE
|
R:= NULL:
count:= 0: F:= 10;
for n from 4 while count < 100 do
F:= F * (4*n-2)/n;
if not isprime(n) then
count:= count+1;
R:= R, F mod (n^4);
fi
od:
|
|
MATHEMATICA
|
Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* Michael De Vlieger, Feb 01 2018 *)
|
|
PROG
|
(PARI) forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", "))
(Python)
from sympy import binomial, composite
c = composite(n)
return binomial(2*c-1, c-1) % c**4 # Chai Wah Wu, Feb 02 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|