login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298946 a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number. 4
35, 462, 2339, 4627, 2378, 4238, 5148, 1260, 57635, 85026, 64410, 100509, 163716, 171918, 93876, 309780, 148969, 444220, 370712, 532771, 652200, 938386, 816466, 907874, 569300, 1107298, 2470810, 2953692, 887812, 1341810, 2956584, 1941390, 589961, 6248628 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Composites c where a(n) = 1 could be called "Wolstenholme pseudoprimes". Do any such composites exist?
A necessary condition for c to be a "Wolstenholme pseudoprime" would be that it is a term of A228562 or A267824.
LINKS
MAPLE
R:= NULL:
count:= 0: F:= 10;
for n from 4 while count < 100 do
F:= F * (4*n-2)/n;
if not isprime(n) then
count:= count+1;
R:= R, F mod (n^4);
fi
od:
R; # Robert Israel, Feb 02 2018
MATHEMATICA
Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* Michael De Vlieger, Feb 01 2018 *)
PROG
(PARI) forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", "))
(Python)
from sympy import binomial, composite
def A298946(n):
c = composite(n)
return binomial(2*c-1, c-1) % c**4 # Chai Wah Wu, Feb 02 2018
CROSSREFS
Sequence in context: A105947 A183846 A219936 * A219582 A177079 A107915
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jan 30 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 15:08 EDT 2024. Contains 375976 sequences. (Running on oeis4.)