The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298946 a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number. 4
 35, 462, 2339, 4627, 2378, 4238, 5148, 1260, 57635, 85026, 64410, 100509, 163716, 171918, 93876, 309780, 148969, 444220, 370712, 532771, 652200, 938386, 816466, 907874, 569300, 1107298, 2470810, 2953692, 887812, 1341810, 2956584, 1941390, 589961, 6248628 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Composites c where a(n) = 1 could be called "Wolstenholme pseudoprimes". Do any such composites exist? A necessary condition for c to be a "Wolstenholme pseudoprime" would be that it is a term of A228562 or A267824. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE R:= NULL: count:= 0: F:= 10; for n from 4 while count < 100 do F:= F * (4*n-2)/n; if not isprime(n) then count:= count+1; R:= R, F mod (n^4); fi od: R; # Robert Israel, Feb 02 2018 MATHEMATICA Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* Michael De Vlieger, Feb 01 2018 *) PROG (PARI) forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", ")) (Python) from sympy import binomial, composite def A298946(n): c = composite(n) return binomial(2*c-1, c-1) % c**4 # Chai Wah Wu, Feb 02 2018 CROSSREFS Cf. A088164, A228562, A244214, A267824, A281302, A298944, A298945. Sequence in context: A105947 A183846 A219936 * A219582 A177079 A107915 Adjacent sequences: A298943 A298944 A298945 * A298947 A298948 A298949 KEYWORD nonn AUTHOR Felix Fröhlich, Jan 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 15:08 EDT 2024. Contains 375976 sequences. (Running on oeis4.)