login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107916
a(n) = binomial(n+3,2)*binomial(n+4,3)*binomial(n+5,5)/12.
1
1, 30, 350, 2450, 12348, 49392, 166320, 490050, 1297725, 3149146, 7105098, 15071420, 30321200, 58262400, 107535744, 191548044, 330569505, 554550150, 906840550, 1449035742, 2267198780, 3479762000, 5247450000, 7785618750, 11379460365, 16402583106, 23339541330
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (1/17280)(n+1)(n+2)^3*(n+3)^3*(n+4)^2*(n+5).
G.f.: -(2*x^5+28*x^4+85*x^3+75*x^2+19*x+1)/(x-1)^11. - Colin Barker, Sep 20 2012
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 1400*Pi^2 + 2880*zeta(3) - 51835/3.
Sum_{n>=0} (-1)^n/a(n) = 20*Pi^2 + 28160*log(2) + 4320*zeta(3) - 74725/3. (End)
MAPLE
a:=n->(1/12)*binomial(n+3, 2)*binomial(n+4, 3)*binomial(n+5, 5): seq(a(n), n=0..30);
MATHEMATICA
a[n_] := Binomial[n + 3, 2] * Binomial[n + 4, 3] * Binomial[n + 5, 5]/12; Array[a, 25, 0] (* Amiram Eldar, May 29 2022 *)
CROSSREFS
Sequence in context: A214085 A125418 A339197 * A091775 A222086 A008656
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved