login
A214085
n^2 * (n^4 - n^2 + n + 1) / 2.
2
0, 1, 30, 342, 1960, 7575, 22806, 57820, 129312, 262845, 495550, 879186, 1483560, 2400307, 3747030, 5671800, 8358016, 12029625, 16956702, 23461390, 31924200, 42790671, 56578390, 73884372, 95392800, 121883125, 154238526, 193454730, 240649192, 297070635
OFFSET
0,3
COMMENTS
Row sums of the triangle in A214084.
FORMULA
a(n) = n * A000217(n) * A100104(n).
a(n) = A000217(A000578(n)) - A000217(A000290(n) - 1).
G.f.: x*(1+23*x+153*x^2+161*x^3+22*x^4)/(1-x)^7. - Bruno Berselli, Jul 09 2012
a(0)=0, a(1)=1, a(2)=30, a(3)=342, a(4)=1960, a(5)=7575, a(6)=22806, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Dec 12 2012
MATHEMATICA
Table[n^2 (n^4 - n^2 + n + 1)/2, {n, 0, 29}] (* Bruno Berselli, Jul 09 2012 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 30, 342, 1960, 7575, 22806}, 40] (* Harvey P. Dale, Dec 12 2012 *)
PROG
(Haskell)
a214085 n = n^2 * (n^4 - n^2 + n + 1) `div` 2
(Magma) [n^2*(n^4-n^2+n+1)/2: n in [0..29]]; // Bruno Berselli, Jul 09 2012
CROSSREFS
Sequence in context: A107967 A354656 A115500 * A125418 A339197 A107916
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 07 2012
STATUS
approved