OFFSET
1,2
COMMENTS
No zeros among the first 2^20 terms.
For odd primes p, it seems that a(p) = p^2.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064549(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 65537;
A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); };
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318511_12 = DirSqrt(vector(up_to, n, A064549(n)));
A318511(n) = numerator(v318511_12[n]);
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 30 2018
STATUS
approved