login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318511
Numerators of the sequence whose Dirichlet convolution with itself yields A064549, n * Product_{primes p|n} p.
9
1, 2, 9, 2, 25, 9, 49, 4, 27, 25, 121, 9, 169, 49, 225, 6, 289, 27, 361, 25, 441, 121, 529, 18, -125, 169, 405, 49, 841, 225, 961, 12, 1089, 289, 1225, 27, 1369, 361, 1521, 50, 1681, 441, 1849, 121, 675, 529, 2209, 27, -1029, -125, 2601, 169, 2809, 405, 3025, 98, 3249, 841, 3481, 225, 3721, 961, 1323, 20, 4225, 1089, 4489, 289, 4761, 1225, 5041, 27
OFFSET
1,2
COMMENTS
No zeros among the first 2^20 terms.
For odd primes p, it seems that a(p) = p^2.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064549(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 65537;
A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); };
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318511_12 = DirSqrt(vector(up_to, n, A064549(n)));
A318511(n) = numerator(v318511_12[n]);
CROSSREFS
Cf. A064549, A318512 (denominators).
Cf. also A317935.
Sequence in context: A188966 A248433 A091943 * A345299 A276048 A339203
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 30 2018
STATUS
approved