login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276048
Sequence associated with the functional equation of the Riemann zeta zero spectrum (see formulas).
0
0, 2, 9, 2, 625, 1, 117649, 2, 9, 1, 25937424601, 1, 23298085122481, 1, 1, 2, 48661191875666868481, 1, 104127350297911241532841, 1, 1, 1, 907846434775996175406740561329, 1, 625, 1, 9, 1, 88540901833145211536614766025207452637361, 1
OFFSET
1,2
COMMENTS
The functional equation formula in the answer by Peter Humphries is for the Dirichlet eta function and corresponds to the second term in this sequence. This sequence corresponds to zeta function products over all the divisors.
FORMULA
a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} mu(d)*d^(1 - s)*Sum_{d|n} mu(d)*d^(s)).
a(n) = A014963(n)^(A014963(n)-1), n > 1.
a(n) = A014963(n)^(-A120112(n)), n > 1.
a(prime(n)) = A000169(prime(n)).
MATHEMATICA
Clear[s]; -Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(1 - (s))]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(s)], s -> 1], {n, 1, 30}]; Exp[%]
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Aug 17 2016
STATUS
approved