The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276048 Sequence associated with the functional equation of the Riemann zeta zero spectrum (see formulas). 0
 0, 2, 9, 2, 625, 1, 117649, 2, 9, 1, 25937424601, 1, 23298085122481, 1, 1, 2, 48661191875666868481, 1, 104127350297911241532841, 1, 1, 1, 907846434775996175406740561329, 1, 625, 1, 9, 1, 88540901833145211536614766025207452637361, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The functional equation formula in the answer by Peter Humphries is for the Dirichlet eta function and corresponds to the second term in this sequence. This sequence corresponds to zeta function products over all the divisors. LINKS Table of n, a(n) for n=1..30. Peter Humphries, What completes the Dirichlet generating function ζ(s+c-1) where c is a constant?, Math StackExchange. Peter Humphries, What is the symmetric functional equation of the Dirichlet eta function?, Math StackExchange. FORMULA a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} mu(d)*d^(1 - s)*Sum_{d|n} mu(d)*d^(s)). a(n) = A014963(n)^(A014963(n)-1), n > 1. a(n) = A014963(n)^(-A120112(n)), n > 1. a(prime(n)) = A000169(prime(n)). MATHEMATICA Clear[s]; -Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(1 - (s))]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(s)], s -> 1], {n, 1, 30}]; Exp[%] CROSSREFS Cf. A000169, A014963, A120112, A230283, A230284. Sequence in context: A091943 A318511 A345299 * A339203 A179451 A124918 Adjacent sequences: A276045 A276046 A276047 * A276049 A276050 A276051 KEYWORD nonn AUTHOR Mats Granvik, Aug 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 08:13 EDT 2024. Contains 375059 sequences. (Running on oeis4.)