OFFSET
1,1
COMMENTS
Each term a(n) is a prime number (hence, deficient) for which the adjacent composite numbers a(n)-1 and a(n)+1 are not deficient. In most instances, both a(n)-1 and a(n)+1 will be abundant but, in a few instances, one will be abundant and the other will be perfect.
The difference between this sequence and A133855 can be investigated by searching for primes adjacent to terms of A000396. - R. J. Mathar, Aug 28 2016
LINKS
Timothy L. Tiffin and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..190 from Timothy L. Tiffin)
EXAMPLE
19 lies between two abundant numbers (18 and 20), while 29 lies between a perfect number (28) and an abundant number (30).
MAPLE
select(t -> isprime(t) and numtheory:-sigma(t-1) >= 2*(t-1) and numtheory:-sigma(t+1)>=2*(t+1), [seq(i, i=3..10000, 2)]); # Robert Israel, Aug 26 2016
MATHEMATICA
Select[Prime@ Range@ 212, Boole@ Map[DivisorSigma[1, #] < 2 # &, # + {-1, 0, 1}] == {0, 1, 0} &] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(PARI) is_a005100(n) = sigma(n) < 2*n
is(n) = ispseudoprime(n) && !is_a005100(n-1) && !is_a005100(n+1) \\ Felix Fröhlich, Aug 26 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Timothy L. Tiffin, Aug 17 2016
STATUS
approved