The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248433 T(n,k)=Number of length n+2 0..k arrays with every three consecutive terms having the sum of some two elements equal to twice the third 13
 2, 9, 2, 16, 9, 2, 29, 20, 9, 2, 42, 45, 24, 9, 2, 61, 70, 69, 28, 9, 2, 80, 105, 118, 101, 36, 9, 2, 105, 140, 185, 198, 165, 44, 9, 2, 130, 189, 252, 327, 342, 261, 52, 9, 2, 161, 242, 357, 462, 601, 590, 389, 68, 9, 2, 192, 301, 470, 691, 884, 1105, 1014, 645, 84, 9, 2, 229, 360 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts .2.9..16...29...42....61....80...105...130....161....192....229....266....309 .2.9..20...45...70...105...140...189...242....301....360....437....514....597 .2.9..24...69..118...185...252...357...470....593....716....881...1046...1217 .2.9..28..101..198...327...462...691...932...1203...1474...1829...2184...2551 .2.9..36..165..342...601...884..1381..1922...2533...3144...3957...4770...5613 .2.9..44..261..590..1105..1684..2775..3978...5365...6776...8639..10512..12467 .2.9..52..389.1014..2021..3200..5589..8218..11401..14696..18947..23274..27861 .2.9..68..645.1766..3761..6216.11317.17210..24491..32082..42077..52288..63213 .2.9..84.1029.3062..6969.11944.22921.35962..52505..70120..93459.117518.143619 .2.9.100.1541.5286.12815.22810.46415.74792.112443.153386.207401.264150.326755 LINKS R. H. Hardin, Table of n, a(n) for n = 1..9999 FORMULA Empirical for column k: k=1: a(n) = a(n-1) k=2: a(n) = a(n-1) k=3: a(n) = a(n-1) +2*a(n-3) -2*a(n-4) k=4: a(n) = a(n-1) +4*a(n-3) -4*a(n-4) k=5: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -4*a(n-6) +4*a(n-7) k=6: a(n) = 8*a(n-3) -11*a(n-6) +4*a(n-9) k=7: [order 13] Empirical for row n: n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also quadratic polynomial plus a constant quasipolynomial with period 2 n=2: a(n) = a(n-1) +a(n-3) -a(n-5) -a(n-7) +a(n-8); also a quadratic polynomial plus a constant quasipolynomial with period 12 n=3: [order 18; also a quadratic polynomial plus a constant quasipolynomial with period 840] n=4: [order 36] n=5: [order 70] EXAMPLE Some solutions for n=6 k=4 ..2....3....3....0....4....3....1....4....0....2....3....0....2....0....2....1 ..4....3....4....2....2....4....3....2....2....4....2....2....0....2....1....0 ..0....3....2....4....0....2....2....3....1....3....1....4....4....1....0....2 ..2....3....3....3....1....3....4....4....0....2....0....0....2....3....2....4 ..1....3....4....2....2....4....3....2....2....1....2....2....0....2....4....0 ..0....3....2....4....0....2....2....3....1....0....4....1....1....4....3....2 ..2....3....0....3....1....0....4....4....0....2....0....3....2....3....2....4 ..1....3....1....2....2....4....0....2....2....4....2....2....0....2....1....3 CROSSREFS Sequence in context: A074916 A228375 A188966 * A091943 A318511 A345299 Adjacent sequences: A248430 A248431 A248432 * A248434 A248435 A248436 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Oct 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 08:44 EST 2024. Contains 370294 sequences. (Running on oeis4.)