login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248432
Number of length n+2 0..7 arrays with every three consecutive terms having the sum of some two elements equal to twice the third.
1
80, 140, 252, 462, 884, 1684, 3200, 6216, 11944, 22810, 44396, 85402, 163204, 317716, 611248, 1168198, 2274196, 4375320, 8362052, 16278784, 31318664, 59855842, 116523764, 224179214, 428448488, 834077068, 1604674164, 3066832822
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 10*a(n-3) - 10*a(n-4) - 22*a(n-6) + 22*a(n-7) + 12*a(n-9) - 12*a(n-10) - a(n-12) + a(n-13).
Empirical g.f.: 2*x*(40 + 30*x + 56*x^2 - 295*x^3 - 89*x^4 - 160*x^5 + 588*x^6 + 58*x^7 + 96*x^8 - 317*x^9 - 5*x^10 - 9*x^11 + 27*x^12) / ((1 - x)*(1 - 10*x^3 + 22*x^6 - 12*x^9 + x^12)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..6....6....0....4....2....3....4....6....4....3....2....4....5....2....3....4
..4....2....3....2....3....1....6....4....2....5....3....2....3....4....5....5
..5....4....6....0....4....2....5....5....3....4....1....6....7....3....7....3
..3....0....0....4....5....0....4....3....1....6....5....4....5....5....6....7
..7....2....3....2....3....1....3....1....2....2....3....5....3....4....5....5
..5....4....6....3....7....2....2....2....0....4....7....3....4....3....7....6
..3....6....0....1....5....0....4....0....1....3....5....1....5....5....3....4
..1....5....3....5....6....1....3....1....2....2....3....5....6....4....5....2
CROSSREFS
Column 7 of A248433.
Sequence in context: A204648 A202447 A202440 * A107931 A234134 A134769
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved