login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204648
Number of (n+1) X 6 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.
1
80, 137, 284, 571, 1076, 1918, 3261, 5329, 8408, 12867, 19162, 27859, 39640, 55328, 75895, 102489, 136444, 179309, 232860, 299131, 380428, 479362, 598865, 742225, 913104, 1115575, 1354142, 1633779, 1959952, 2338660, 2776459, 3280505, 3858580
OFFSET
1,1
COMMENTS
Column 5 of A204651.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8) for n>11.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(80 - 343*x + 582*x^2 - 335*x^3 - 292*x^4 + 600*x^5 - 379*x^6 + 89*x^7 - 4*x^8 + 8*x^9 - 4*x^10) / ((1 - x)^7*(1 + x)).
a(n) = (-10080 + 43776*n + 15308*n^2 + 2970*n^3 + 620*n^4 + 54*n^5 + 2*n^6)/1440 for n>3 and even.
a(n) = (-10890 + 43776*n + 15308*n^2 + 2970*n^3 + 620*n^4 + 54*n^5 + 2*n^6)/1440 for n>3 and odd.
(End)
EXAMPLE
Some solutions for n=5:
..1..0..1..0..1..0....0..0..0..0..0..1....0..0..0..0..0..0....0..1..1..1..1..1
..0..1..0..1..0..1....0..0..0..0..0..1....0..0..0..0..1..1....1..1..1..1..1..1
..1..0..1..0..1..1....0..0..0..0..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..0..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..1..0..1..1..1..1....0..0..0..1..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..1..1..1..1....1..1..1..1..1..1
CROSSREFS
Cf. A204651.
Sequence in context: A349307 A349308 A224547 * A202447 A202440 A248432
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 17 2012
STATUS
approved