login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204647
Number of (n+1) X 5 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.
1
48, 90, 178, 330, 571, 938, 1478, 2248, 3317, 4766, 6690, 9198, 12415, 16482, 21558, 27820, 35465, 44710, 55794, 68978, 84547, 102810, 124102, 148784, 177245, 209902, 247202, 289622, 337671, 391890, 452854, 521172, 597489, 682486, 776882, 881434
OFFSET
1,1
COMMENTS
Column 4 of A204651.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7) for n>9.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(48 - 150*x + 160*x^2 + 10*x^3 - 167*x^4 + 145*x^5 - 43*x^6 - 5*x^7 + 4*x^8) / ((1 - x)^6*(1 + x)).
a(n) = (1920 + 9776*n + 3480*n^2 + 540*n^3 + 90*n^4 + 4*n^5)/480 for n>2 and even.
a(n) = (1950 + 9776*n + 3480*n^2 + 540*n^3 + 90*n^4 + 4*n^5)/480 for n>2 and odd.
(End)
EXAMPLE
Some solutions for n=5:
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..1..1..1....0..0..0..0..0....0..0..0..1..1....0..0..0..0..0
..1..1..1..1..1....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
..1..1..1..1..1....0..0..0..0..1....0..1..1..1..1....0..0..0..1..1
..1..1..1..1..1....0..0..0..1..0....0..1..1..1..1....0..0..1..1..1
CROSSREFS
Cf. A204651.
Sequence in context: A260099 A224546 A247720 * A260980 A260070 A260973
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 17 2012
STATUS
approved