login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260099
Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000101 or 00010101.
1
48, 85, 206, 472, 1116, 2575, 6068, 14096, 33044, 76925, 180064, 419884, 981640, 2290567, 5352572, 12495004, 29189140, 68152069, 159185904, 371714924, 868161704, 2027353439, 4734819476, 11057193964, 25823175228, 60305591933
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-2) + 2*a(n-3) + 11*a(n-4) + 6*a(n-5) + 2*a(n-6) + 6*a(n-7) - 8*a(n-8) + 2*a(n-9) for n>10.
Empirical g.f.: x*(48 + 85*x + 110*x^2 + 206*x^3 + 6*x^4 - 4*x^5 + 20*x^6 - 172*x^7 + 112*x^8 - 20*x^9) / (1 - 2*x^2 - 2*x^3 - 11*x^4 - 6*x^5 - 2*x^6 - 6*x^7 + 8*x^8 - 2*x^9). - Colin Barker, Dec 28 2018
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....1..0..1....0..1..0....1..0..1....0..1..0....0..0..1
..1..0..1....1..0..1....0..1..0....0..0..1....0..0..0....0..0..1....0..0..0
..0..1..0....0..1..0....1..0..0....0..1..0....0..0..1....0..0..0....0..0..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..1..0....1..0..1....0..0..0
..0..0..0....0..0..0....1..0..0....0..0..0....1..0..1....0..1..0....1..0..1
..1..0..0....1..0..0....0..0..0....0..1..0....0..0..0....1..0..0....0..1..0
CROSSREFS
Column 1 of A260106.
Sequence in context: A333814 A062902 A260106 * A224546 A247720 A204647
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 16 2015
STATUS
approved