login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260096 Numbers whose decimal and hexadecimal representations both have strictly decreasing digits. 0
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 50, 64, 65, 80, 81, 82, 83, 84, 96, 97, 98, 210, 54320, 54321, 64320, 64321, 65210, 764210 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Intersection of A009995 and A023797. - Michel Marcus, Jul 16 2015

LINKS

Table of n, a(n) for n=1..30.

Tweet by Wolfram|Alpha Can't

EXAMPLE

54321 belongs to the sequence because its digits are strictly decreasing and its hexadecimal representation, D431, also has strictly decreasing digits.

976210 doesn't belong to the sequence because, while its decimal digits are strictly decreasing, its hexadecimal representation EE552 is not strictly decreasing.

MATHEMATICA

dec[v_] := 0 > Max@ Differences@ v; Select[ Union[ FromDigits/@ Select[ Flatten[ Permutations/@ Subsets[ Range[0, 9]], 1], dec]], dec@ IntegerDigits[#, 16] &] (* Giovanni Resta, Jul 16 2015 *)

PROG

(Python)

def decreasing(top):

    if top==0:

        yield []

        return

    for d in range(top):

        if d>0:

            yield [d]

        for s in decreasing(d):

            yield [d]+s

def to_int(s):

    t = 0

    for d in s:

        t = t*10+d

    return t

def to_hex(n):

    out = []

    if n==0:

        return [0]

    while n:

        m = n%16

        n = (n-m)//16

        out.insert(0, m)

    return out

def is_decreasing(h):

    m = h[0]

    for d in h[1:]:

        if d>=m:

            return False

        m = d

    return True

ns = sorted(to_int(s) for s in list(decreasing(10)))

a = [n for n in ns if is_decreasing(to_hex(n))]

CROSSREFS

Cf. A009995 (in base 10 only), A023797 (in base 16 only).

Sequence in context: A161978 A132579 A004850 * A141709 A330192 A062683

Adjacent sequences:  A260093 A260094 A260095 * A260097 A260098 A260099

KEYWORD

nonn,base,fini,full

AUTHOR

Christian Perfect, Jul 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 10:23 EST 2022. Contains 350565 sequences. (Running on oeis4.)