login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000101 or 00010101.
1

%I #8 Dec 28 2018 09:06:22

%S 48,85,206,472,1116,2575,6068,14096,33044,76925,180064,419884,981640,

%T 2290567,5352572,12495004,29189140,68152069,159185904,371714924,

%U 868161704,2027353439,4734819476,11057193964,25823175228,60305591933

%N Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000101 or 00010101.

%H R. H. Hardin, <a href="/A260099/b260099.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-2) + 2*a(n-3) + 11*a(n-4) + 6*a(n-5) + 2*a(n-6) + 6*a(n-7) - 8*a(n-8) + 2*a(n-9) for n>10.

%F Empirical g.f.: x*(48 + 85*x + 110*x^2 + 206*x^3 + 6*x^4 - 4*x^5 + 20*x^6 - 172*x^7 + 112*x^8 - 20*x^9) / (1 - 2*x^2 - 2*x^3 - 11*x^4 - 6*x^5 - 2*x^6 - 6*x^7 + 8*x^8 - 2*x^9). - _Colin Barker_, Dec 28 2018

%e Some solutions for n=4:

%e ..0..0..0....0..0..0....1..0..1....0..1..0....1..0..1....0..1..0....0..0..1

%e ..1..0..1....1..0..1....0..1..0....0..0..1....0..0..0....0..0..1....0..0..0

%e ..0..1..0....0..1..0....1..0..0....0..1..0....0..0..1....0..0..0....0..0..1

%e ..0..0..0....1..0..0....0..0..0....0..0..0....0..1..0....1..0..1....0..0..0

%e ..0..0..0....0..0..0....1..0..0....0..0..0....1..0..1....0..1..0....1..0..1

%e ..1..0..0....1..0..0....0..0..0....0..1..0....0..0..0....1..0..0....0..1..0

%Y Column 1 of A260106.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 16 2015