|
|
A318303
|
|
a(0) = 0, a(n) = n + a(n-1) if n is odd, a(n) = -3*a(n/2) if n is even.
|
|
3
|
|
|
0, 1, -3, 0, 9, 14, 0, 7, -27, -18, -42, -31, 0, 13, -21, -6, 81, 98, 54, 73, 126, 147, 93, 116, 0, 25, -39, -12, 63, 92, 18, 49, -243, -210, -294, -259, -162, -125, -219, -180, -378, -337, -441, -398, -279, -234, -348, -301, 0, 49, -75, -24, 117, 170, 36, 91, -189, -132, -276, -217, -54, 7, -147, -84, 729, 794, 630
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Let g_k(0) = 0. g_k(n) = n + g_k(n-1) if n is odd, g_k(n) = k*a(n/2) if n is even. A228451(n) is g_1(n), A298011(n) is g_2(n). This sequence is a(n) = g_k(n) where k = -3.
|
|
LINKS
|
|
|
MATHEMATICA
|
Nest[Append[#1, If[OddQ@ #2, #2 + #1[[-1]], -3 #1[[#2/2 + 1]] ]] & @@ {#, Length@ #} &, {0}, 66] (* Michael De Vlieger, Aug 25 2018 *)
|
|
PROG
|
(PARI) a(n)=if(n==0, 0, if(n%2, n+a(n-1), -3*a(n/2)));
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|