login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318303
a(0) = 0, a(n) = n + a(n-1) if n is odd, a(n) = -3*a(n/2) if n is even.
3
0, 1, -3, 0, 9, 14, 0, 7, -27, -18, -42, -31, 0, 13, -21, -6, 81, 98, 54, 73, 126, 147, 93, 116, 0, 25, -39, -12, 63, 92, 18, 49, -243, -210, -294, -259, -162, -125, -219, -180, -378, -337, -441, -398, -279, -234, -348, -301, 0, 49, -75, -24, 117, 170, 36, 91, -189, -132, -276, -217, -54, 7, -147, -84, 729, 794, 630
OFFSET
0,3
COMMENTS
Let g_k(0) = 0. g_k(n) = n + g_k(n-1) if n is odd, g_k(n) = k*a(n/2) if n is even. A228451(n) is g_1(n), A298011(n) is g_2(n). This sequence is a(n) = g_k(n) where k = -3.
LINKS
Rémy Sigrist, Colored scatterplot of a(n) for n = 0..1000000 (where the color is function of A262304(n))
Rémy Sigrist, Colored scatterplot of a(n) for n = 0..1000000 (where the color is function of floor(n / 2^(A070939(n) - 6)))
Rémy Sigrist, A colored scatterplot of (A317825(n), abs(A318303(n))) for n = 1..2^20-1 (where the color is function of floor(n / 2^(A070939(n)-5)))
MATHEMATICA
Nest[Append[#1, If[OddQ@ #2, #2 + #1[[-1]], -3 #1[[#2/2 + 1]] ]] & @@ {#, Length@ #} &, {0}, 66] (* Michael De Vlieger, Aug 25 2018 *)
PROG
(PARI) a(n)=if(n==0, 0, if(n%2, n+a(n-1), -3*a(n/2)));
KEYWORD
sign,look
AUTHOR
Altug Alkan, Aug 24 2018
STATUS
approved