The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317825 a(1) = 1, a(n) = 3*a(n/2) if n is even, a(n) = n - a(n-1) if n is odd. 5
 1, 3, 0, 9, -4, 0, 7, 27, -18, -12, 23, 0, 13, 21, -6, 81, -64, -54, 73, -36, 57, 69, -46, 0, 25, 39, -12, 63, -34, -18, 49, 243, -210, -192, 227, -162, 199, 219, -180, -108, 149, 171, -128, 207, -162, -138, 185, 0, 49, 75, -24, 117, -64, -36, 91, 189, -132, -102, 161, -54, 115, 147, -84, 729, -664, -630, 697, -576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence has an elegant fractal-like scatter plot, situated (approximately) symmetrically over X-axis. This sequence can also be generalized with some modifications. Let f_k(1) = 1. f_k(n) = floor(k*a(n/2)) if n is even, f_k(n) = n - f_k(n-1) if n is odd. This sequence is a(n) = f_k(n) where k = 3. For example, if k is e (A001113), then recurrence also provides a curious fractal-like structure that has some similarities with a(n). See Links section for their plots. A scatterplot of (Sum_{i = 1..2*n} a(i)) - n^2 gives a similar plot as for a(n). - A.H.M. Smeets, Sep 01 2018 LINKS Antti Karttunen, Table of n, a(n) for n = 1..16383 Altug Alkan, A scatterplot of a(n) for n <= 2^15-1 Altug Alkan, A scatterplot of f_e(n) for n <= 2^15-1 Altug Alkan, A scatterplot of (A317825(n), abs(A318303(n))) Rémy Sigrist, A colored scatterplot of (A317825(n), abs(A318303(n))) for n = 1..2^20-1 (where the color is function of n) FORMULA From A.H.M. Smeets, Sep 01 2018: (Start) Sum_{i = 1..2*n-1} a(i) = n^2 for n >= 0. Sum_{i = 1..2*n} a(i) = 3*a(n) + n^2 for n >= 0, a(0) = 0. Sum_{i = 1..36*2^n} a(i) = 162*A085350(n) for n >= 0. Lim_{n -> infinity} a(n)/n^2 = 0. Lim_{n -> infinity} (Sum_{i = 1..n} a(i))/n^2 = 1/4. (End) MATHEMATICA Nest[Append[#1, If[EvenQ[#2], 3 #1[[#2/2]], #2 - #1[[-1]] ]] & @@ {#, Length@ # + 1} &, {1}, 67] (* Michael De Vlieger, Aug 22 2018 *) PROG (PARI) A317825(n) = if(1==n, n, if(!(n%2), 3*A317825(n/2), n-A317825(n-1))); (Python) aa =  a, n = 0, 0 while n < 16383: ....n = n+1 ....if n%2 == 0: ........a = 3*aa[n//2] ....else: ........a = n-a ....aa = aa+[a] ....print(n, a) # A.H.M. Smeets, Sep 01 2018 (MAGMA) [n eq 1 select 1 else IsEven(n) select 3*Self(n div 2) else n- Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 03 2018 CROSSREFS Cf. A318265, A318303. Sequence in context: A021101 A154202 A214699 * A002346 A021327 A297053 Adjacent sequences:  A317822 A317823 A317824 * A317826 A317827 A317828 KEYWORD sign,look AUTHOR Altug Alkan and Antti Karttunen, Aug 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 14:26 EST 2020. Contains 331094 sequences. (Running on oeis4.)