The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318301 Triangle T(n, k) read by rows: T(0, 0) = 1 and T(n, k) = Sum_{i=0..k-1} T(n, i) + Sum_{i=k..n-1} T(n-1, i). 0
 1, 1, 1, 2, 3, 5, 10, 18, 33, 61, 122, 234, 450, 867, 1673, 3346, 6570, 12906, 25362, 49857, 98041, 196082, 388818, 771066, 1529226, 3033090, 6016323, 11934605, 23869210, 47542338, 94695858, 188620650, 275712074, 748391058, 1490765793, 2969596981, 5939193962, 11854518714 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The left edge of the triangle appears to be A005321. LINKS Table of n, a(n) for n=0..37. FORMULA An equivalent recursion: T(0, 0) = T(1, 0) = 1, T(n, 0) = 2*T(n-1, n-1) if n>=2, T(n, k) = 2*T(n, k-1) - T(n-1, k-1) if n>=k>=1. EXAMPLE Triangle begins: 1 1 1 2 3 5 10 18 33 61 122 234 450 867 1673 3346 6570 12906 25362 49857 98041 ... T(5, 2) = (3346 + 6570) + (450 + 867 + 1673) = 12906; T(5, 2) = 2 * 6570 - 234 = 12906. PROG (Python) def T(n, k): if k == 0: if n == 0 or n == 1: return 1 return 2 * T(n-1, n-1) return 2 * T(n, k-1) - T(n-1, k-1) (PARI) T(n, k) = if (k == 0, if (n <= 1, 1, 2 * T(n-1, n-1)), 2 * T(n, k-1) - T(n-1, k-1)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 25 2018 CROSSREFS Cf. A005321. Sequence in context: A117222 A199594 A081172 * A030032 A002661 A216959 Adjacent sequences: A318298 A318299 A318300 * A318302 A318303 A318304 KEYWORD nonn,tabl AUTHOR Nicolas Nagel, Aug 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 18:23 EDT 2023. Contains 363100 sequences. (Running on oeis4.)