

A318302


The 10adic integer d = ...24802510377 satisfying d^3 + 1 = a, a^3 + 1 = b, b^3 + 1 = c, and c^3 + 1 = d.


10



7, 7, 3, 0, 1, 5, 2, 0, 8, 4, 2, 1, 4, 8, 9, 7, 5, 7, 7, 9, 0, 9, 4, 3, 0, 8, 7, 0, 5, 2, 3, 2, 9, 5, 3, 5, 6, 9, 9, 4, 5, 6, 7, 5, 2, 6, 0, 5, 0, 3, 7, 7, 9, 4, 3, 6, 5, 0, 2, 3, 2, 2, 3, 7, 2, 0, 1, 8, 5, 4, 2, 7, 1, 7, 6, 5, 4, 6, 7, 1, 5, 1, 2, 5, 5, 5, 8, 9, 0, 9, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS



EXAMPLE

377^3 + 1 == 634 (mod 10^3), 634^3 + 1 == 105 (mod 10^3), 105^3 + 1 == 626 (mod 10^3) and 626^3 + 1 == 377 (mod 10^3), so 7 7 3 comprise the sequence's first three terms.


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



