OFFSET
1,1
COMMENTS
It is impossible to find a number with 9 distinct decimal digits because the prime factors 2 and 5 generate d_k = 0.
The finite subsequence containing the smallest numbers having at least j distinct digits for j = 2, 3, ..., 8, is 12, 154, 53625, 279174, 19427226, 82447365 and 41762985264.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000
EXAMPLE
1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9.
MAPLE
with(numtheory):nn:=10^8:
for n from 1 to nn do:
lst:={}:d:=factorset(n):n0:=nops(d):
q:=convert(n, base, 10):n1:=nops(q):
p:=product(‘q[i]’, ‘i’=1..n1):
if p<>0
then
for i from 1 to n1 do :
lst:=lst union {ithprime(q[i])}:
od:
if lst = d
then
print(n):
else
fi:fi:
od:
MATHEMATICA
ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* Giovanni Resta, Aug 24 2018 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Aug 24 2018
STATUS
approved