|
|
A318298
|
|
Numbers whose set of decimal digits coincides with the set of the indices of their prime factors.
|
|
2
|
|
|
12, 14, 154, 1196, 14112, 21888, 53625, 226512, 279174, 358435, 821142, 1222452, 1665664, 2228814, 2454375, 2614248, 2872116, 4425729, 5751746, 8653645, 9551256, 15261246, 19427226, 19644898, 19775998, 21271488, 27676935, 29591892, 29956212, 41878242, 45574144
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is impossible to find a number with 9 distinct decimal digits because the prime factors 2 and 5 generate d_k = 0.
The finite subsequence containing the smallest numbers having at least j distinct digits for j = 2, 3, ..., 8, is 12, 154, 53625, 279174, 19427226, 82447365 and 41762985264.
|
|
LINKS
|
Giovanni Resta, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9.
|
|
MAPLE
|
with(numtheory):nn:=10^8:
for n from 1 to nn do:
lst:={}:d:=factorset(n):n0:=nops(d):
q:=convert(n, base, 10):n1:=nops(q):
p:=product(‘q[i]’, ‘i’=1..n1):
if p<>0
then
for i from 1 to n1 do :
lst:=lst union {ithprime(q[i])}:
od:
if lst = d
then
print(n):
else
fi:fi:
od:
|
|
MATHEMATICA
|
ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* Giovanni Resta, Aug 24 2018 *)
|
|
CROSSREFS
|
Cf. A001221, A080683, A097227, A290675.
Sequence in context: A058951 A287916 A002926 * A139310 A221819 A329026
Adjacent sequences: A318295 A318296 A318297 * A318299 A318300 A318301
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Michel Lagneau, Aug 24 2018
|
|
STATUS
|
approved
|
|
|
|