login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062234
From Bertrand's postulate: a(n) = 2*prime(n) - prime(n+1).
34
1, 1, 3, 3, 9, 9, 15, 15, 17, 27, 25, 33, 39, 39, 41, 47, 57, 55, 63, 69, 67, 75, 77, 81, 93, 99, 99, 105, 105, 99, 123, 125, 135, 129, 147, 145, 151, 159, 161, 167, 177, 171, 189, 189, 195, 187, 199, 219, 225, 225, 227, 237, 231, 245, 251, 257, 267, 265, 273, 279
OFFSET
1,3
COMMENTS
The theorem that a(n) > 0 for all n is known as "Bertrand's Postulate", and was proved by Tchebycheff in 1852.
The analog for Ramanujan primes is Paksoy's theorem that 2*R(n) - R(n+1) > 0 for n > 1. See A233822. - Jonathan Sondow, Dec 16 2013
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10001 (first 1000 terms from Harry J. Smith)
FORMULA
a(n) = A000040(n) - A001223(n). - Zak Seidov, Sep 07 2012
a(n) = 2*A000040(n) - A000040(n+1). - Zak Seidov, May 12 2020
a(n) = A098764(n) - A000040(n). - Anthony S. Wright, Feb 19 2024
MAPLE
a:= n-> (p-> 2*p(n)-p(n+1))(ithprime):
seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2022
MATHEMATICA
Table[2*Prime[n]-Prime[n+1], {n, 60}] (* James C. McMahon, Apr 27 2024 *)
2#[[1]]-#[[2]]&/@Partition[Prime[Range[70]], 2, 1] (* Harvey P. Dale, Jul 29 2024 *)
ListConvolve[{-1, 2}, Prime[Range[100]]] (* Paolo Xausa, Nov 02 2024 *)
PROG
(PARI) a(n) = 2*prime(n) - prime(n + 1); \\ Harry J. Smith, Aug 03 2009
(Haskell)
a062234 n = a062234_list !! (n-1)
a062234_list = zipWith (-) (map (* 2) a000040_list) (tail a000040_list)
-- Reinhard Zumkeller, May 31 2015
CROSSREFS
Cf. A000040, A001223, A215808 (prime terms), A233822.
When negated, forms the left edge of irregular triangle A252750, and also the leftmost column of square array A372562.
Sequence in context: A183429 A107443 A204099 * A168329 A161828 A219128
KEYWORD
easy,nonn
AUTHOR
Reinhard Zumkeller, Jun 29 2001
EXTENSIONS
Edited by N. J. A. Sloane, Feb 24 2023
STATUS
approved