login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372562
Square array A(n, k) = A246278(1+n, k) - 2*A246278(n, k), read by falling antidiagonals, where A246278 is the prime shift array.
4
-1, 1, -1, 3, 7, -3, 11, 5, -1, -3, 1, 71, 7, 23, -9, 21, 13, 93, -11, -73, -9, 5, 85, -19, 645, -65, -49, -15, 49, -1, 189, 5, -465, -119, -217, -15, 39, 463, -11, 495, -127, 519, -209, -193, -17, 23, 95, 1151, -29, -273, -103, -2967, -207, -217, -27, -5, 149, 357, 9839, -119, -255, -231, -1551, -435, -721, -25
OFFSET
1,4
COMMENTS
For all k >= 1, A(1+A336836(2*k), k) < 0, and it is the topmost negative number of the column k.
In those columns k where 2k is in A104210, 6, 12, 18, 24, ..., there is present a "prime thread" of successive primes (see the example).
FORMULA
A(n,k) = A252748(A246278(n,k)).
EXAMPLE
The top left corner of the array:
k= 1 2 3 4 5 6 7 8 9 10 11 12
2k= 2 4 6 8 10 12 14 16 18 20 22 24
--+-------------------------------------------------------------------------------
1 | -1, 1, 3, 11, 1, 21, 5, 49, 39, 23, -5, 87,
2 | -1, 7, 5, 71, 13, 85, -1, 463, 95, 149, 7, 605,
3 | -3, -1, 7, 93, -19, 189, -11, 1151, 357, 87, -37, 2023,
4 | -3, 23, -11, 645, 5, 495, -29, 9839, 165, 783, -13, 9757,
5 | -9, -73, -65, -465, -127, -273, -119, -721, 39, -903, -129, 2743,
6 | -9, -49, -119, 519, -103, -255, -105, 26399, -1377, 225, -227, 18649,
7 | -15, -217, -209, -2967, -231, -2679, -397, -36721, -2223, -2825, -351, -28937,
...
Terms of column 9: 39 (3*13), 95 (5*19), 357 (3*7*17), 165 (3*5*11), 39 (3*13), -1377 (- 3^4 * 17), -2223 (- 3^2 * 13 * 19), ..., show an ascending "prime thread" (3, 5, 7, 11, 13, 17, 19, ...) that is mentioned in comments.
PROG
(PARI)
up_to = 66;
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A252748(n) = (A003961(n) - (2*n));
A372562sq(row, col) = A252748(A246278sq(row, col));
A372562list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A372562sq(col, (a-(col-1))))); (v); };
v372562 = A372562list(up_to);
A372562(n) = v372562[n];
CROSSREFS
Cf. A062234 (column 1 when values are negated).
Cf. also A252750 (same terms in irregular triangle), A372563.
See also conjecture 1 in A349753.
Sequence in context: A005596 A159566 A316255 * A096385 A205723 A088837
KEYWORD
sign,tabl
AUTHOR
Antti Karttunen, May 21 2024
STATUS
approved