login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252750
a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).
10
-1, -1, -1, 1, -3, 3, 7, 11, -3, 1, 5, 21, -1, 39, 71, 49, -9, 5, 13, 23, 7, 45, 85, 87, 23, 47, 95, 153, 93, 267, 463, 179, -9, -5, -1, 43, -19, 81, 149, 109, -11, 91, 175, 195, 189, 345, 605, 309, -73, 167, 311, 241, 357, 435, 775, 531, 645, 529, 965, 909, 1151, 1551, 2639, 601, -15, -1, 7, 29, -11, 63, 127, 185, 5, 53, 125, 327, 87, 573, 997, 407, -65, 121, 253, 413, 231
OFFSET
0,5
COMMENTS
From Antti Karttunen, May 21 2024: (Start)
Like A005940 itself, also this irregular table derived from it can be represented as a binary tree:
-1
|
................. -1 ..................
-1 1
-3 ......./ \....... 3 7 ......./ \....... 11
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
-3 1 5 21 -1 39 71 49
-9 5 13 23 7 45 85 87 23 47 95 153 93 267 463 179
etc.
(End)
LINKS
FORMULA
a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).
a(n) = A252748(A005940(n+1)).
Other identities. For all n >= 1:
sgn(a(n)) = (-1)^(1+A252743(n)).
PROG
(Scheme) (define (A252750 n) (- (A003961 (A005940 (+ 1 n))) (* 2 (A005940 (+ 1 n)))))
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A252750(n) = (A003961(A005940(1+n)) - (2 * A005940(1+n))); \\ Antti Karttunen, May 21 2024
CROSSREFS
Cf. A252743 (characteristic function for positive terms), A252751 (partial sums of sequence b(0) = 0, b(n) = a(n), for n>0).
Cf. A062234 (when negated forms the left edge apart from the initial term), A003063 (right edge).
Cf. also A372562 (apart from the initial term, same data in square array).
Sequence in context: A326269 A052989 A358823 * A287274 A305099 A292141
KEYWORD
sign,tabf
AUTHOR
Antti Karttunen, Dec 21 2014
EXTENSIONS
Term a(0) = -1 prepended by Antti Karttunen, May 21 2024
STATUS
approved