login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252745
Number of ones on each row of irregular tables A252743 and A252744.
8
0, 0, 1, 3, 6, 15, 26, 57, 118, 237, 486, 989, 1992, 3997, 8038, 16133, 32331, 64777, 129810, 260191, 521325, 1043924, 2089305, 4180716
OFFSET
0,4
COMMENTS
Also, number of nodes on level n (the root 1 occurs at level 0) of binary tree depicted in A005940 where the left hand child is larger than the right hand child of the node.
E.g. on the level 2, containing nodes 3 and 4, the children of 3 are 5 < 6, and the children of 4 are 9 > 8, thus a(2) = 1.
FORMULA
a(0) = 1; for n>1: a(n) = Sum_{k=A000079(n-1) .. A000225(n)} A252743(k) = Sum_{k=2^(n-1) .. (2^n)-1} A252744(k).
Other identities. For n >= 1:
a(n) = 2^(n-1) - A252746(n).
PROG
(PARI)
allocatemem(234567890);
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
A252745print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 0; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 0; for(i = 0, (2^n)-1, lev[i+1] = if(!(i%2), A003961(oldlev[(i\2)+1]), 2*oldlev[(i\2)+1]); s += if((i%2), (lev[i+1] < lev[i]), 0))); write("b252745.txt", n, " ", s)); };
A252745print(23); \\ The terms a(0) .. a(23) were computed with this program.
(Scheme)
(define (A252745 n) (if (zero? n) 0 (add A252744 (A000079 (- n 1)) (A000225 n))))
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2014
STATUS
approved