login
A252746
Number of zeros on each row of irregular tables A252743 and A252744.
5
1, 1, 1, 1, 2, 1, 6, 7, 10, 19, 26, 35, 56, 99, 154, 251, 437, 759, 1262, 1953, 2963, 4652, 7847, 13588
OFFSET
0,5
COMMENTS
Also, number of nodes on level n (the root 1 occurs at level 0) of binary tree depicted in A005940 where the left hand child is less than the right hand child of the node.
E.g. on the level 2, containing nodes 3 and 4, the children of 3 are 5 < 6, and the children of 4 are 9 > 8, thus a(2) = 1.
FORMULA
a(n) = 2^(n-1) - A252745(n).
PROG
(PARI)
allocatemem(234567890);
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
A252746print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 0; for(i = 0, (2^n)-1, lev[i+1] = if(!(i%2), A003961(oldlev[(i\2)+1]), 2*oldlev[(i\2)+1]); s += if((i%2), (lev[i+1] > lev[i]), 0))); write("b252746.txt", n, " ", s)); };
A252746print(23); \\ The terms a(0) .. a(23) were computed with this program.
(Scheme) (define (A252746 n) (if (= 0 n) 1 (- (A000079 (- n 1)) (A252745 n))))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Dec 21 2014
STATUS
approved