login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172285
a(n) = (5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9.
3
0, 2, 1, 6, 7, 20, 33, 74, 139, 288, 565, 1142, 2271, 4556, 9097, 18210, 36403, 72824, 145629, 291278, 582535, 1165092, 2330161, 4660346, 9320667, 18641360, 37282693, 74565414, 149130799, 298261628, 596523225, 1193046482, 2386092931, 4772185896
OFFSET
0,2
FORMULA
a(n) = 3*a(n-2) + 2*a(n-3), n>2.
a(n+1) = 2*a(n) + (-1)^n * (2+n).
a(n) = A053088(n-1) + A001045(n), n>0.
a(n) = A000079(n) - A053088(n).
a(2n) = A141291(n). a(2n+1) = 2*A164044(n).
G.f.: x*(2+x)/( (1-2*x)*(1+x)^2 ).
MAPLE
A172295 := proc(n) (5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9 ; end proc: seq(A172295(n), n=0..100) ; # R. J. Mathar, Feb 02 2010
MATHEMATICA
Table[(5*2^n - 5*(-1)^n - 3*n*(-1)^n)/9, {n, 0, 40}] (* Wesley Ivan Hurt, Aug 27 2015 *)
PROG
(Magma) [(5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
(PARI) first(m)=vector(m, i, i--; (5*2^i -5*(-1)^i - 3*i*(-1)^i ) / 9) \\ Anders Hellström, Aug 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 30 2010
EXTENSIONS
Definition replaced by explicit formula; g.f. added - R. J. Mathar, Feb 02 2010
STATUS
approved