login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172288
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^2^n into powers of 2 less than or equal to 2^k.
3
1, 2, 1, 2, 3, 1, 2, 4, 9, 1, 2, 4, 25, 129, 1, 2, 4, 35, 4225, 32769, 1, 2, 4, 36, 47905, 268468225, 2147483649, 1, 2, 4, 36, 222241, 733276217345, 1152921506754330625, 9223372036854775809, 1
OFFSET
0,2
COMMENTS
A(18,18) = 2797884726...4715787265 has 1420371 decimal digits and was computed by the algorithm given below.
LINKS
FORMULA
A(n,k) = [x^2^(2^n-1)] 1/(1-x) * 1/Product_{j=0..k-1} (1-x^(2^j)).
EXAMPLE
A(2,1) = 9, because there are 9 partitions of 2^2^2=16 into powers of 2 less than or equal to 2^1=2: [2,2,2,2,2,2,2,2], [2,2,2,2,2,2,2,1,1], [2,2,2,2,2,2,1,1,1,1], [2,2,2,2,2,1,1,1,1,1,1], [2,2,2,2,1,1,1,1,1,1,1,1], [2,2,2,1,1,1,1,1,1,1,1,1,1], [2,2,1,1,1,1,1,1,1,1,1,1,1,1], [2,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, ...
1, 9, 25, 35, 36, ...
1, 129, 4225, 47905, 222241, ...
1, 32769, 268468225, 733276217345, 751333186150401, ...
MAPLE
b:= proc(n, j) option remember; local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)
fi
end:
A:= (n, k)-> b(2^(2^n-k), k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j , b[n, j] = b[n-1, j] + b[2*n, j-1] , True, nn = 1 + Floor[n]; r := n - nn; (nn-j)*Binomial[nn, j] * Sum [Binomial[j, h] /(nn - j + h) * b[j - h + r, j] *(-1)^h, {h, 0, j-1}] ] ]; a[n_, k_] := b[2^(2^n-k), k]; Table[Table[a[n, d-n] // FullSimplify, {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
CROSSREFS
Main diagonal gives: A182135.
Sequence in context: A286880 A178030 A131879 * A134628 A064882 A065158
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 26 2011
STATUS
approved