OFFSET
0,5
COMMENTS
Column sequences converge towards A000123.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy] See Table 4.
FORMULA
G.f. of column k: 1/(1-x) * 1/Product_{j=0..k-1} (1 - x^(2^j)).
A(n,k) = Sum_{i=0..k} A089177(n,i).
For n < 2^k, T(n,k) = A000123(k). T(n,0) = 1, T(n,1) = n+1. - M. F. Hasler, Feb 19 2019
EXAMPLE
A(3,2) = 6, because there are 6 partitions of 2*3=6 into powers of 2 less than or equal to 2^2=4: [4,2], [4,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, ...
1, 4, 6, 6, 6, 6, ...
1, 5, 9, 10, 10, 10, ...
1, 6, 12, 14, 14, 14, ...
MAPLE
b:= proc(n, j) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)
fi
end:
A:= (n, k)-> b(n/2^(k-1), k):
seq(seq(A(n, d-n), n=0..d), d=0..13);
MATHEMATICA
b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j == 0, 1, j == 1, n+1, n<j, b[n, j] = b[n-1, j] + b[2*n, j-1], True, nn = Floor[n]+1; r = n - nn; (nn-j)*Binomial[nn, j]*Sum[(Binomial[j, h]*b[j-h+r, j]*(-1)^h)/(nn-j+h), {h, 0, j-1}]]]; A[n_, k_] := b[n/2^(k-1), k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
PROG
(PARI) A181322(n, k, r=1)={if(n<r, r, !k, 1, r&&n/=2^(k-1); k==1, n+1, n<k, A181322(n-1, k, 0)+A181322(2*n, k-1, 0), n-=r=1+n\1, (r-k)*binomial(r, k)*sum(i=0, min(k-1, k+n), binomial(k, i)/(r-k+i)*A181322(k-i+n, k, 0) *(-1)^i))} \\ From Maple. - M. F. Hasler, Feb 19 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 26 2011
STATUS
approved