login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089177
Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= 1+log_2(floor(n))) giving number of non-squashing partitions of n into k parts.
4
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 4, 1, 1, 5, 6, 2, 1, 6, 9, 4, 1, 7, 12, 6, 1, 8, 16, 10, 1, 1, 9, 20, 14, 2, 1, 10, 25, 20, 4, 1, 11, 30, 26, 6, 1, 12, 36, 35, 10, 1, 13, 42, 44, 14, 1, 14, 49, 56, 20, 1, 15, 56, 68, 26, 1, 16, 64, 84, 36, 1, 1, 17, 72, 100, 46, 2, 1, 18, 81, 120, 60, 4, 1
OFFSET
0,5
COMMENTS
T(n,k) = A181322(n,k) - A181322(n,k-1) for n>0. - Alois P. Heinz, Jan 25 2014
LINKS
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
Row 0 = {1}, row 1 = {1 1}; for n >=2, row n = row n-1 + (row floor(n/2) shifted one place right).
G.f. for column k (k >= 2): x^(2^(k-2))/((1-x)*Product_j=1..k-2} (1-x^(2^j))).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 2;
1, 4, 4, 1;
1, 5, 6, 2;
1, 6, 9, 4;
1, 7, 12, 6;
1, 8, 16, 10, 1;
MAPLE
T:= proc(n) option remember;
`if`(n=0, 1, zip((x, y)-> x+y, [T(n-1)], [0, T(floor(n/2))], 0)[])
end:
seq(T(n), n=0..25); # Alois P. Heinz, Apr 01 2012
MATHEMATICA
row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = Plus @@ PadRight[ {row[n-1], Join[{0}, row[Floor[n/2]]]} ]; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jan 31 2014 *)
CROSSREFS
Cf. A089178. Columns give A002620, A008804, A088932, A088954. Row sums give A000123.
Sequence in context: A226130 A137569 A266715 * A348445 A023996 A307998
KEYWORD
nonn,tabf,look,easy
AUTHOR
N. J. A. Sloane, Dec 08 2003
EXTENSIONS
More terms from Alford Arnold, May 22 2004
STATUS
approved