login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089179
Number of equivalence classes of permutations of n letters, where the relation is that f and g are equivalent if every cycle of f is a power of some cycle of g.
0
1, 1, 2, 6, 20, 85, 402, 2464, 15752, 119655, 976190, 9331894, 91769988, 1077214879, 12570658310, 168390947820, 2337860163248, 35513649943201, 544140329564898, 9660558198790510, 166372364728477220, 3247358308730858301, 63714244306588584962, 1358307822841849329256
OFFSET
0,3
LINKS
Albert Nijenhuis, Solution to Problem 5932, Amer. Math. Monthly, 82 (1975), pp. 86-87.
R. P. Stanley, Problem 5932, Amer. Math. Monthly, 80 (1973), p. 949.
FORMULA
E.g.f. x*exp(Sum( x^n/(n*phi(n)), n=1..infinity )) (phi is Euler's totient function). a(n) = n* A003510(n-1). - Vladeta Jovovic, Apr 15 2006
MATHEMATICA
yy[nn_] := CoefficientList[Normal[Series[Exp[Sum[x^n t[n]/(n), {n, 1, nn}]], {x, 0, nn}]], x]; zz[nn_] := Table[Simplify[yy[nn][[m]] m! ], {m, 1, nn}]; zz[10] (* will then give the first 10 values *)
CROSSREFS
Sequence in context: A372987 A177480 A365229 * A177483 A004104 A304932
KEYWORD
easy,nonn,changed
AUTHOR
Herbert S. Wilf, Dec 08 2003
EXTENSIONS
More terms from Vladeta Jovovic, Apr 15 2006
a(0)=1 prepended by Alois P. Heinz, Jan 08 2025
STATUS
approved