OFFSET
0,5
COMMENTS
Equivalently, T(n,k) is the number of independent vertex sets of size k in two disjoint paths, one of length floor(n/2) and the other of length ceiling(n/2). - Andrew Howroyd, Jan 01 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2675 (rows 0..100)
Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
John Konvalina, On the number of combinations without unit separation., Journal of Combinatorial Theory, Series A 31.2 (1981): 101-107. See Table I.
FORMULA
T(n,k) = A335964(n+2,k).
T(n,0) = 1.
T(n,1) = n.
T(1,k) = 0 if k>1.
T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2).
G.f.: (1 + y*x + (y^2 + y)*x^2 + y^2*x^3)/((1 + y*x^2)*(1 - x - y*x^2)). - Andrew Howroyd, Jan 01 2024
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 2;
1, 4, 4;
1, 5, 7, 2;
1, 6, 11, 6, 1;
1, 7, 16, 13, 3;
1, 8, 22, 24, 9;
1, 9, 29, 40, 22, 3;
...
MATHEMATICA
Flatten[Drop[CoefficientList[CoefficientList[Series[1/((1+x^2*y)(1-x-x^2*y)), {x, 0, 17}], x], y], 2]] (* Michael A. Allen, Dec 27 2021 *)
PROG
(PARI) T(n) = {[Vecrev(p) | p <- Vec((1 + y*x + (y^2 + y)*x^2 + y^2*x^3)/((1 + y*x^2)*(1 - x - y*x^2)) + O(x*x^n))]}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 01 2024
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 22 2021
EXTENSIONS
Terms corrected and extended by Michael A. Allen, Dec 27 2021
STATUS
approved