login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088954 G.f.: 1/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)). 4
1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1827, 2028, 2264, 2500, 2780, 3060, 3384, 3708, 4088, 4468, 4904, 5340, 5844, 6348, 6920, 7492, 8148, 8804, 9544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of partitions of 2*n into powers of 2 less than or equal to 2^5.  First differs from A000123 at n=32. - Alois P. Heinz, Apr 02 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..2000

N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.

Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 2, -2, 0, 2, 0, -2, 0, 2, -2, 2, 0, -2, 2, -2, 0, 2, -2, 2, 0, -2, 0, 2, 0, -2, 2, -2, 0, 2, -1).

FORMULA

a(0)=1, a(1)=2, a(2)=4, a(3)=6, a(4)=10, a(5)=14, a(6)=20, a(7)=26, a(8)=36, a(9)=46, a(10)=60, a(11)=74, a(12)=94, a(13)=114, a(14)=140, a(15)=166, a(16)=202, a(17)=238, a(18)=284, a(19)=330, a(20)=390, a(21)=450, a(22)=524, a(23)=598, a(24)=692, a(25)=786, a(26)=900, a(27)=1014, a(28)=1154, a(29)=1294, a(30)=1460, a(31)=1626, a(n)=2*a(n-1)-2*a(n-3)+ 2*a(n-4)- 2*a(n-5)+ 2*a(n-7)-2*a(n-9)+2*a(n-11)-2*a(n-12)+2*a(n-13)-2*a(n-15)+2*a(n-16)-2*a(n-17)+ 2*a(n-19)- 2*a(n-20)+ 2*a(n-21)-2*a(n-23)+2*a(n-25)-2*a(n-27)+2*a(n-28)-2*a(n-29)+ 2*a(n-31)-a(n-32). - Harvey P. Dale, Feb 12 2013

MAPLE

f := proc(n, k) option remember; if k > n then RETURN(0); fi; if k= 0 then if n=0 then RETURN(1) else RETURN(0); fi; fi; if k = 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(f(n-1, k)); fi; f(n-1, k)+f(n/2, k-1); end; # present sequence is f(2m, 6)

GFF := k->x^(2^(k-2))/((1-x)*mul((1-x^(2^j)), j=0..k-2)); # present g.f. is GFF(6)/x^16

a:= proc(n) local m, r; m:= iquo(n, 16, 'r'); r:= r+1; [1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166][r] +(((((128/5*m +8*(15+r))*m +(228 +[0, 32, 68, 104, 144, 184, 228, 272, 320, 368, 420, 472, 528, 584, 644, 704][r]))*m +(172 +[0, 43, 98, 153, 223, 293, 378, 463, 566, 669, 790, 911, 1053, 1195, 1358, 1521][r]))*m +(247/5 +[0, 22, 55, 88, 138, 188, 255, 322, 415, 508, 627, 746, 900, 1054, 1243, 1432][r]))*m)/3 end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 17 2009

MATHEMATICA

CoefficientList[Series[1/((1-x)^2(1-x^2)(1-x^4)(1-x^8)(1-x^16)), {x, 0, 70}], x] (* or *) LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, 0, -2, 0, 2, -2, 2, 0, -2, 2, -2, 0, 2, -2, 2, 0, -2, 0, 2, 0, -2, 2, -2, 0, 2, -1}, {1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626}, 70](* Harvey P. Dale, Feb 12 2013 *)

CROSSREFS

See A000027, A002620, A008804, A088932, A000123 for similar sequences.

Column k=5 of A181322.

Sequence in context: A322010 A322003 A088932 * A000123 A268752 A277277

Adjacent sequences:  A088951 A088952 A088953 * A088955 A088956 A088957

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 02 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 15:52 EST 2020. Contains 332078 sequences. (Running on oeis4.)