login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178030 Array read by antidiagonals: T(0,m)=2, T(1,m)=1, T(n,m)=A000032(n) and recursively T(n,m)=( T(n-1,m)^2 + (4*m + 1)*(-1)^n) / T(n-2, m), n>=0, m>=1. 1
2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 7, 16, 7, 1, 2, 11, 53, 36, 9, 1, 2, 18, 175, 187, 64, 11, 1, 2, 29, 578, 971, 457, 100, 13, 1, 2, 47, 1909, 5042, 3263, 911, 144, 15, 1, 2, 76, 6305, 26181, 23298, 8299, 1597, 196, 17, 1, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Antidiaognal sums are 2, 3, 6, 12, 33, 112, 458, 2151, 11334, 65972,....

LINKS

Table of n, a(n) for n=0..54.

EXAMPLE

  2,   2,   2,   2,   2,   2,   2,   2,   2,   2, ,...

1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...

3,   5,   7,   9,  11,  13,  15,  17,  19,  21,...

4,  16,  36,  64, 100, 144, 196, 256, 324, 400,...

7,  53, 187, 457, 911,1597,2563,3857,5527,7621,...

MAPLE

A178030 := proc(n, k)

    if k = 0 then

        A000032(n);

    elif n = 0 then

        2 ;

    elif n = 1 then

        1 ;

    else

        (procname(n-1, k)^2+(4*k+1)*(-1)^n)/procname(n-2, k) ;

    end if;

end proc: # R. J. Mathar, May 15 2016

MATHEMATICA

f[0, a_] := 2; f[1, a_] := 1;

f[n_, a_] := f[n, a] = (f[n - 1, a]^2 - (4*a + 1)*(-1)^(n - 1))/f[n - 2, a];

a = Table[Table[f[n, m], {n, 0, 10}], {m, 1, 11}];

Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];

Flatten[%]

CROSSREFS

Cf. A000032.

Sequence in context: A268956 A208515 A286880 * A131879 A172288 A134628

Adjacent sequences:  A178027 A178028 A178029 * A178031 A178032 A178033

KEYWORD

nonn,tabl,easy

AUTHOR

Roger L. Bagula, May 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 18:11 EST 2020. Contains 338616 sequences. (Running on oeis4.)