The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252753 Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n). 20
 1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 21, 16, 11, 14, 27, 20, 35, 30, 33, 24, 49, 50, 51, 36, 55, 42, 45, 32, 13, 22, 39, 28, 65, 54, 57, 40, 77, 70, 87, 60, 85, 66, 69, 48, 121, 98, 147, 100, 125, 102, 105, 72, 91, 110, 123, 84, 115, 90, 93, 64, 17, 26, 63, 44, 95, 78, 81, 56, 119, 130, 159, 108, 145, 114, 117, 80 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence can be represented as a binary tree. Each child to the left is obtained by applying A250469 to the parent, and each child to the right is obtained by doubling the parent:                                     1                                     |                  ...................2...................                 3                                       4       5......../ \........6                   9......../ \........8      / \                 / \                 / \                 / \     /   \               /   \               /   \               /   \    /     \             /     \             /     \             /     \   7       10         15       12         25       18         21       16 11 14   27  20     35  30   33  24     49  50   51  36     55  42   45  32 etc. Sequence A252755 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees. LINKS Antti Karttunen, Table of n, a(n) for n = 0..8192 FORMULA a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n). As a composition of related permutations: a(n) = A252755(A054429(n)). a(n) = A250245(A005940(1+n)). Other identities. For all n >= 1: A055396(a(n)) = A001511(n). [A005940 has the same property.] a(A003945(n)) = A001248(n) for n>=1. - Peter Luschny, Jan 13 2015 MATHEMATICA (* b = A250469 *) b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], 2 a[(n-1)/2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *) PROG (Scheme, with memoization-macro definec) (definec (A252753 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A250469 (A252753 (/ n 2)))) (else (* 2 (A252753 (/ (- n 1) 2)))))) CROSSREFS Inverse: A252754. Row sums: A253787, products: A253788. Fixed points of a(n-1): A253789. Similar permutations: A005940, A252755, A054429, A250245. Cf. also A001248, A001511, A055396, A083221, A181565, A250469, A253555. Sequence in context: A269387 A207801 A324106 * A005940 A332815 A005941 Adjacent sequences:  A252750 A252751 A252752 * A252754 A252755 A252756 KEYWORD nonn,tabf,nice AUTHOR Antti Karttunen, Jan 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 16:13 EDT 2020. Contains 337344 sequences. (Running on oeis4.)