login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252755
Tree of Eratosthenes, mirrored: a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A250469(a(n)).
24
1, 2, 4, 3, 8, 9, 6, 5, 16, 21, 18, 25, 12, 15, 10, 7, 32, 45, 42, 55, 36, 51, 50, 49, 24, 33, 30, 35, 20, 27, 14, 11, 64, 93, 90, 115, 84, 123, 110, 91, 72, 105, 102, 125, 100, 147, 98, 121, 48, 69, 66, 85, 60, 87, 70, 77, 40, 57, 54, 65, 28, 39, 22, 13, 128, 189, 186, 235, 180, 267, 230, 203, 168, 249, 246, 305, 220, 327, 182, 187, 144
OFFSET
0,2
COMMENTS
This sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A250469 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 21 18 25 12 15 10 7
32 45 42 55 36 51 50 49 24 33 30 35 20 27 14 11
etc.
Sequence A252753 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees.
FORMULA
a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A250469(a(n)).
As a composition of related permutations:
a(n) = A252753(A054429(n)).
a(n) = A250245(A163511(n)).
MATHEMATICA
(* b = A250469 *) b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1 + 2 == k2, Return[m2]]]];
a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], 2 a[n/2], b[a[(n-1)/2]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A252755 n) (cond ((<= n 1) (+ n 1)) ((even? n) (* 2 (A252755 (/ n 2)))) (else (A250469 (A252755 (/ (- n 1) 2))))))
CROSSREFS
Inverse: A252756.
Row sums: A253787, products: A253788.
Similar permutations: A163511, A252753, A054429, A163511, A250245, A269865.
Cf. also: A249814 (Compare the scatterplots).
Sequence in context: A365656 A182944 A269385 * A366275 A163511 A332817
KEYWORD
nonn,tabf,look
AUTHOR
Antti Karttunen, Jan 02 2015
STATUS
approved